【題目】已知函數(shù)f(x)=ax2+(a-2)lnx+1(a∈R).
(1)若函數(shù)在點(diǎn)(1,f(1))處的切線(xiàn)平行于直線(xiàn)y=4x+3,求a的值;
(2)令c(x)=f(x)+(3-a)lnx+2a,討論c(x)的單調(diào)性;
(3)a=1時(shí),函數(shù)y=f(x)圖象上的所有點(diǎn)都落在區(qū)域內(nèi),求實(shí)數(shù)t的取值范圍.
【答案】(1)a=2(2)見(jiàn)解析(3)t≤3
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a的方程,求出a的值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;
(3)代入a的值,整理得:,令,根據(jù)函數(shù)的單調(diào)性求出t的范圍即可.
函數(shù)的定義域?yàn)椋?/span>0,+∞),
(1)f′(x)=2ax+,由題意f′(1)=4,
所以2a+(a-2)=4,
解之得:a=2
(2)由已知c(x)=ax2+lnx+2a+1,
則c′(x)=2ax+=,
當(dāng)a≥0,則當(dāng)x∈(0,+∞)時(shí),有c′(x)>0,
故c(x)在x∈(0,+∞)上單調(diào)遞增;
當(dāng)a<0,則當(dāng)x∈(0,)時(shí)有c′(x)>0,
當(dāng)x∈(,+∞))時(shí)有c′(x)<0,
故c(x)在(0,)單調(diào)遞增,在(,+∞)單調(diào)遞減;
(3)a=1時(shí),f(x)=x2-lnx+1,
即當(dāng)x>0時(shí)恒有x2-lnx+1≥tx-x2,又x∈(0,+∞),
整理得:t≤2x-+,
令g(x)=2x-+,
則g′(x)=2--=,
令h(x)=2x2+lnx-2,
由h′(x)=4x+>0恒成立,
即h(x)=2x2+lnx-2在(0,+∞)上單調(diào)遞增,
且h(1)=0,則g′(1)=0,
所以x∈(0,1)時(shí)h(x)<0,x∈(1,+∞)時(shí)h(x)>0,
所以x∈(0,1)時(shí)g′(x)<0,此時(shí)y=g(x)單調(diào)遞減,
x∈(1,+∞)時(shí)g′(x)>0,此時(shí)y=g(x)單調(diào)遞增,
所以g(x)≥g(1)=3,
所以t≤3;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(其中為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的直角坐標(biāo)方程為.
(1)求直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)分別相交于異于原點(diǎn)的點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)F為拋物線(xiàn)C:()的焦點(diǎn),過(guò)點(diǎn)F的動(dòng)直線(xiàn)l與拋物線(xiàn)C交于M,N兩點(diǎn),且當(dāng)直線(xiàn)l的傾斜角為45°時(shí),.
(1)求拋物線(xiàn)C的方程.
(2)試確定在x軸上是否存在點(diǎn)P,使得直線(xiàn)PM,PN關(guān)于x軸對(duì)稱(chēng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線(xiàn)的焦點(diǎn)且斜率為的直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),且.
(1)求的值;
(2)拋物線(xiàn)上一點(diǎn),直線(xiàn)(其中)與拋物線(xiàn)交于,兩個(gè)不同的點(diǎn)(均與點(diǎn)不重合),設(shè)直線(xiàn),的斜率分別為,,.動(dòng)點(diǎn)在直線(xiàn)上,且滿(mǎn)足,其中為坐標(biāo)原點(diǎn).當(dāng)線(xiàn)段最長(zhǎng)時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)動(dòng)健康已成為大家越來(lái)越關(guān)心的話(huà)題,某公司開(kāi)發(fā)的一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾號(hào).手機(jī)用戶(hù)可以通過(guò)關(guān)注該公眾號(hào)查看自己每天行走的步數(shù),同時(shí)也可以和好友進(jìn)行運(yùn)動(dòng)量的PK和點(diǎn)贊.現(xiàn)從張華的好友中隨機(jī)選取40人(男、女各20人),記錄他們某一天行走的步數(shù),并將數(shù)據(jù)整理如表:
步數(shù) 性別 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
(1)若某人一天行走的步數(shù)超過(guò)8000步被評(píng)定為“積極型”,否則被評(píng)定為“懈怠型”,根據(jù)題意完成下列2×2列聯(lián)表,并據(jù)此判斷能否有90%的把握認(rèn)為男、女的“評(píng)定類(lèi)型”有差異?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)在張華的這40位好友中,從該天行走的步數(shù)不超過(guò)5000步的人中隨機(jī)抽取2人,設(shè)抽取的女性有X人,求X=1時(shí)的概率.
參考公式與數(shù)據(jù):
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個(gè)人,每人至少分得1張,則下列兩個(gè)事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)過(guò)點(diǎn)且與橢圓相交于兩點(diǎn).過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為.證明直線(xiàn)過(guò)軸上的定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐 中,底面為矩形,平面,二面角的平面角為,為中點(diǎn),為中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)若,求實(shí)數(shù)的值,使得直線(xiàn)與平面所成角為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com