【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為4,焦距為

求橢圓的方程;

過(guò)動(dòng)點(diǎn)的直線(xiàn)交軸與點(diǎn),交于點(diǎn) (在第一象限),且是線(xiàn)段的中點(diǎn).過(guò)點(diǎn)軸的垂線(xiàn)交于另一點(diǎn),延長(zhǎng)于點(diǎn).

設(shè)直線(xiàn)的斜率分別為,證明為定值;

求直線(xiàn)的斜率的最小值.

【答案】;()()見(jiàn)解析,()直線(xiàn)AB 的斜率的最小值為

【解析】試題分析:()分別計(jì)算a,b即得.

)()設(shè),由M(0,m),可得的坐標(biāo),進(jìn)而得到直線(xiàn)PM的斜率,直線(xiàn)QM的斜率,可得為定值.

)設(shè).直線(xiàn)PA的方程為y=kx+m,直線(xiàn)QB的方程為y=–3kx+m.聯(lián)立應(yīng)用一元二次方程根與系數(shù)的關(guān)系得到, ,進(jìn)而可得應(yīng)用基本不等式即得.

試題解析:()設(shè)橢圓的半焦距為c.

由題意知,

所以.

所以橢圓C的方程為.

)()設(shè),

M(0,m),可得

所以直線(xiàn)PM的斜率,

直線(xiàn)QM的斜率.

此時(shí).

所以為定值–3.

)設(shè).

直線(xiàn)PA的方程為y=kx+m,

直線(xiàn)QB的方程為y=–3kx+m.

聯(lián)立

整理得.

,可得,

所以.

同理.

所以

,

所以

,可知k>0,

所以,等號(hào)當(dāng)且僅當(dāng)時(shí)取得.

此時(shí),即,符號(hào)題意.

所以直線(xiàn)AB 的斜率的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),若存在,使得,求實(shí)數(shù)的取值范圍;

(2)若為正整數(shù),方程的兩個(gè)實(shí)數(shù)根滿(mǎn)足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子里有編號(hào)為的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號(hào)的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號(hào).

甲說(shuō):我無(wú)法確定.”

乙說(shuō):我也無(wú)法確定.”

甲聽(tīng)完乙的回答以后,甲又說(shuō):我可以確定了.”

根據(jù)以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號(hào)球 B. 一定沒(méi)有3號(hào)球 C. 可能有5號(hào)球 D. 可能有6號(hào)球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線(xiàn)段的垂直平分線(xiàn)交于點(diǎn),設(shè)動(dòng)點(diǎn)的軌跡為.

(Ⅰ)求的方程;

(Ⅱ)設(shè)直線(xiàn)與軌跡交于兩點(diǎn), 為坐標(biāo)原點(diǎn),若的重心恰好在圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系中,已直曲線(xiàn),將曲線(xiàn)C上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到曲線(xiàn)C1,又已知直線(xiàn),且直線(xiàn)C1交于A、B兩點(diǎn),

1求曲線(xiàn)C1的直角坐標(biāo)方程,并說(shuō)明它是什么曲線(xiàn);

2)設(shè)定點(diǎn), 求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義為R的偶函數(shù),且對(duì)任意的,都有且當(dāng)時(shí), ,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列是正整數(shù)的任一排列,且同時(shí)滿(mǎn)足以下兩個(gè)條件:

;②當(dāng)時(shí), ().

記這樣的數(shù)列個(gè)數(shù)為.

(I)寫(xiě)出的值;

(II)證明不能被4整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.

(1)求證:平面平面;

(2)若,且三棱錐的體積為,求側(cè)面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是腰長(zhǎng)為6的等腰直角三角形,俯視圖是正方形.

(1)請(qǐng)畫(huà)出該幾何體的直觀(guān)圖,并求出它的體積;

(2)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長(zhǎng)為6的正方體ABCDA1B1C1D1?如何組拼?試證明你的結(jié)論;

(3)在(2)的情形下,設(shè)正方體ABCDA1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案