【題目】已知函數(shù)

(1)當時,若存在,使得,求實數(shù)的取值范圍;

(2)若為正整數(shù),方程的兩個實數(shù)根滿足,求的最小值.

【答案】1;211

【解析】試題分析:(1)存在,使得等價于上有兩個不等實根,或上有兩個不等實根,結(jié)合二次函數(shù)的頂點在直線下方或上方列不等式組求解即可;(2)利用一元二次方程方程根的分別,列不等式組,根據(jù)為正整數(shù),先初步判斷的范圍,再利用分類討論思想求解即可.

試題解析:1時,

由題意可知, 上有兩個不等實根,或上有兩個不等實根,則,

解得

即實數(shù)的取值范圍是.

(2)設,則由題意得,即 ,

所以,由于

時, ,且無解,

時, ,且,于是無解,

時, ,且,由,得,此時有解,

綜上所述, ,當時取等號,即的最小值為11

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列 , , 滿足,且當時, ,令

)寫出的所有可能的值.

)求的最大值.

)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修45:不等式選講

已知函數(shù)

1)當時,求不等式的解集;

2)若函數(shù)的值域為,,的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1, ,過動點A,垂足D在線段BC上且異于點B,連接AB,沿折起,使(如圖2所示).

1)當的長為多少時,三棱錐的體積最大;

2)當三棱錐的體積最大時,設點, 分別為棱, 的中點,試在棱上確定一點,使得 ,并求與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知常數(shù),向量 ,經(jīng)過點,以為方向向量的直線與經(jīng)過點,以為方向向量的直線交于點,其中

)求點的軌跡方程,并指出軌跡

)若點,當時, 為軌跡上任意一點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若存在極值點1,求的值;

(2)若存在兩個不同的零點,求證: 為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-4:坐標系與參數(shù)方程】

極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩神坐標系中的長度單位相同.已知曲線的極坐標方程為,

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)在曲線上求一點,使它到直線 為參數(shù))的距離最短,寫出點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列是首項與公比均為的等比數(shù)列(,且),數(shù)列滿足

1)求數(shù)列的前項和;

2)若對一切都有,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的長軸長為4,焦距為

求橢圓的方程;

過動點的直線交軸與點,交于點 (在第一象限),且是線段的中點.過點軸的垂線交于另一點,延長于點.

設直線的斜率分別為,證明為定值;

求直線的斜率的最小值.

查看答案和解析>>

同步練習冊答案