【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:

年份

2010

2011

2012

2013

2014

時(shí)間代號(hào)t

1

2

3

4

5

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10


(1)求y關(guān)于t的回歸方程
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2015年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程

【答案】
(1)解:

由題意, =3, =7.2,

=55﹣5×32=10, =120﹣5×3×7.2=12,

=1.2, =7.2﹣1.2×3=3.6,

∴y關(guān)于t的回歸方程 =1.2t+3.6.


(2)解:t=6時(shí), =1.2×6+3.6=10.8(千億元)
【解析】(1)利用公式求出a,b,即可求y關(guān)于t的回歸方程 .(2)t=6,代入回歸方程,即可預(yù)測(cè)該地區(qū)2015年的人民幣儲(chǔ)蓄存款.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z1 , z2滿足|z1|=|z2|=1,|z1﹣z2|= ,則|z1+z2|等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),曲線在點(diǎn)處的切線與直線垂直.

(1)試比較的大小,并說(shuō)明理由;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ ﹣4,g(x)=kx+3.
(1)當(dāng)a=k=1時(shí),求函數(shù)y=f(x)+g(x)的單調(diào)遞增與單調(diào)遞減區(qū)間;
(2)當(dāng)a∈[3,4]時(shí),函數(shù)f(x)在區(qū)間[1,m]上的最大值為f(m),試求實(shí)數(shù)m的取值范圍;
(3)當(dāng)a∈[1,2]時(shí),若不等式|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2)對(duì)任意x1 , x2∈[2,4](x1<x2)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)定義域?yàn)?/span>的函數(shù):

(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;

(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ﹣ )=1,A,B分別為C與x軸,y軸的交點(diǎn).
(1)寫出C的直角坐標(biāo)方程,并求A,B的極坐標(biāo);
(2)設(shè)M為曲線C上的一個(gè)動(dòng)點(diǎn), (λ>0),| || |=2,求動(dòng)點(diǎn)Q的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程的三個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)拋物線,一個(gè)雙曲線的離心率,則的取值范圍(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽另一個(gè)人當(dāng)裁判,設(shè)每周比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,假設(shè)每局比賽中甲勝乙的概率為,甲勝丙,乙勝丙的概率都是,各局的比賽相互獨(dú)立,第一局甲當(dāng)裁判.

(1)求第三局甲當(dāng)裁判的概率;

(2)記前四次中乙當(dāng)裁判的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案