3.已知等差數(shù)列{an}中,a2+a6=14,Sn為其前n項和,S5=25.
(1)求{an}的通項公式;
(2)設(shè)${b_n}=\frac{2}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn的最小值.

分析 (1)利用已知條件求出數(shù)列的首項與公差,然后求解通項公式.
(2)化簡通項公式的表達(dá)式,利用裂項消項法求解數(shù)列的和即可.

解答 解:(1)等差數(shù)列{an}中,a2+a6=14,Sn為其前n項和,S5=25.∴a3=5,
可得5-d+5+3d=14,解得d=2,則a1=1.
∴an=2n-1;
(2)由(1)知${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}=\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$,${T_n}={b_1}+{b_2}+…+{b_n}=(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})$=$1-\frac{1}{2n+1}=\frac{2n}{2n+1}$,
所以Tn的最小值為$\frac{2}{3}$.

點評 本題考查數(shù)列的通項公式的應(yīng)用,裂項法求解數(shù)列的和,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),B1,B2分別是其上、下頂點,橢圓C的左焦點F1在以B1B2為直徑的圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F1且不與坐標(biāo)軸垂直的直線l交橢圓C于A,B兩點,線段AB的垂直平分線與x軸交于點N,點N的橫坐標(biāo)的取值范圍是(-$\frac{1}{4}$,0),求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線y2=16x的準(zhǔn)線過雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一個焦點,且雙曲線的一條漸近線為$y=\sqrt{3}x$,則該雙曲線的方程是$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)是奇函數(shù)且在(0,+∞)上單調(diào)遞增的是( 。
A.y=lnxB.y=x+$\frac{1}{x}$C.y=x2D.$y={x^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C的中心是坐標(biāo)原點,直線$\sqrt{3}x-2y-4\sqrt{3}=0$過它的兩個頂點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(-4,0),過R(3,0)作與x軸不重合的直線l交橢圓于P,Q兩點,連接AP,AQ,分別交直線$x=\frac{16}{3}$于M,N兩點,試問直線MR,NR的斜率之積是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)+(4-2a)x+2(x∈[1,2]),求函數(shù)g(x)的最小值h(a).
(3)若f(x)≤-2at+4對于任意的x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題“若x=3,則x2-9x+18=0”的逆命題、否命題和逆否命題中,假命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)=ex-ax(a>0).
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若對一切x∈R,f(x)≥1恒成立,求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某高校在2016年的自主招生考試成績中隨機抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格.
(1)求出第4組的頻率;
(2)根據(jù)樣本頻率分布直方圖估計樣本的中位數(shù);
(3)如果從“優(yōu)秀”和“良好”的學(xué)生中分別選出3人與2人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案