16.根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖.
(1)求a的值;
(2)該電子商務(wù)平臺(tái)將年齡在[30,50)之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)者中抽取了10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和X的分布列與數(shù)學(xué)期望.

分析 (1)根據(jù)直方圖面積之和為1列方程求出a;
(2)根據(jù)高消費(fèi)人群與潛在消費(fèi)人群的比例關(guān)系得出人數(shù)比,再根據(jù)超幾何分布的概率公式得出分布列和數(shù)學(xué)期望.

解答 解:(1)由概率之和等于1可得:(0.015+a+0.025+0.015+0.010)×10=1,
解得a=0.035.
(2)高消費(fèi)人群所占比例為(0.035+0.025)×10=0.6,
∴在抽取的10人中高消費(fèi)人群有6人,潛在消費(fèi)人群有4人,
∴X的可能取值為150,180,210,240,
P(X=150)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$,P(X=180)=$\frac{{{C}_{6}^{2}C}_{4}^{1}}{{C}_{10}^{3}}$=$\frac{1}{2}$,P(X=210)=$\frac{{{C}_{6}^{1}C}_{4}^{2}}{{C}_{10}^{3}}$=$\frac{3}{10}$,P(X=240)=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{1}{30}$,
∴X的分布列為:

X 150180  210 240
 P $\frac{1}{6}$ $\frac{1}{2}$ $\frac{3}{10}$$\frac{1}{30}$
∴X的數(shù)學(xué)期望為E(X)=150×$\frac{1}{6}$+180×$\frac{1}{2}$+210×$\frac{3}{10}$+240×$\frac{1}{30}$=186元.

點(diǎn)評(píng) 本題考查了頻率分布直方圖,離散型隨機(jī)變量的分布列,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知α∩β=l,m是平面α內(nèi)的任意直線,在平面β內(nèi)總存在一條直線n,使下列命題一定正確的是( 。
A.m與n相交B.m與n平行C.m與n垂直D.l與m、n都異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.四個(gè)人站成一排,解散后重新站成一排,恰有一個(gè)人位置不變的概率為(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{9}{24}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a=1,b=2,cosC=$\frac{1}{4}$,則sinA=( 。
A.$\frac{\sqrt{15}}{8}$B.$\frac{1}{8}$C.$\frac{\sqrt{10}}{8}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若數(shù)列{an}滿足a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,則a1=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié)每天的時(shí)間與水深關(guān)系表:
時(shí)刻(t)0:003:006:009:0012:0015:0018:0021:0024:00
水深/米(y)5.07.55.02.55.07.55.02.55.0
(1)若用函數(shù)f(t)=Asin(ωt+φ)+h(A>0,ω>0,|φ|<$\frac{π}{2}$)來(lái)近似描述這個(gè)港口的水深和時(shí)間之間的對(duì)應(yīng)關(guān)系,根據(jù)表中數(shù)據(jù)確定函數(shù)表達(dá)式;
(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定要有2.25米的安全間隙(船底與洋底的距離),該船何時(shí)能進(jìn)入港口?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求下列直線的方程:
(1)過(guò)點(diǎn)(2,1)和點(diǎn)(a,2)的直線方程;
(2)過(guò)點(diǎn)A(5,-2)且在x軸上的截距等于在y軸上截距的兩倍的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)A(2,2)和B(-1,3),直線y=kx-k+1與線段AB有公共點(diǎn),則k的取值范圍是( 。
A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,該雙曲線的右支上有一點(diǎn)A,滿足△OAF是等邊三角形(O為坐標(biāo)原點(diǎn)),則雙曲線的離心率為( 。
A.4B.2C.$\sqrt{3}$+1D.$\sqrt{3}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案