11.若數(shù)列{an}滿足a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,則a1=3.

分析 a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,可得$-\frac{1}{2}$=$\frac{1}{1-{a}_{7}}$,解得a7=3,同理可得:a6,a5.可得an+3=an.即可得出.

解答 解:a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,∴$-\frac{1}{2}$=$\frac{1}{1-{a}_{7}}$,解得a7=3,同理可得:a6=$\frac{2}{3}$,a5=-$\frac{1}{2}$.
∴an+3=an
∴a1=a7=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在銳角△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊長(zhǎng),且2asinB=$\sqrt{3}$b.
(1)求A的大;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)x,y,z∈R,且x+2y+3z=1.
(1)當(dāng)z=1,|x+y|+|y+1|>2時(shí),求x的取值范圍.
(2)當(dāng)z=-1,x>0,y>0時(shí),求$u=\frac{x^2}{x+1}+\frac{{2{y^2}}}{y+2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=log2(4x+1)+kx,(k∈R)是偶函數(shù).
(Ⅰ)求k的值;
(Ⅱ)設(shè)函數(shù)g(x)=log2(a•2x-$\frac{4}{3}$a),其中a>0,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一船自西向東勻速航行,上午10時(shí)到達(dá)一座燈塔P的南偏西75°、距燈塔68海里的M處,下午2時(shí)到達(dá)這座燈塔南偏東45°的N處,則該船航行的速度為(單位:海里/小時(shí))( 。
A.$\frac{17\sqrt{2}}{2}$B.34$\sqrt{6}$C.$\frac{17\sqrt{6}}{2}$D.34$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖.
(1)求a的值;
(2)該電子商務(wù)平臺(tái)將年齡在[30,50)之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)者中抽取了10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)計(jì)算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如表是某初中1000名學(xué)生的肥胖情況,其中表格中有三個(gè)數(shù)據(jù)被墨水浸泡,數(shù)據(jù)看不清楚,已知從這批學(xué)生中隨機(jī)抽取1名學(xué)生,抽到偏瘦男生的比例為$\frac{3}{20}$,若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取50名,偏胖學(xué)生中應(yīng)該抽取20人
 偏瘦正!肥胖 
 女生(人) 100173 
 男生(人)177

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{5}}{2}$,則C的漸近線方程為( 。
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=x

查看答案和解析>>

同步練習(xí)冊(cè)答案