19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象向右平移$\frac{π}{6}$個單位得到g(x)的部分圖象如圖所示,則y=Acos(ωx+φ)的單調(diào)遞增區(qū)間為( 。
A.[kπ-$\frac{5}{6}$π,kπ-$\frac{π}{3}$],k∈ZB.[kπ-$\frac{1}{3}$π,kπ+$\frac{π}{6}$],k∈Z
C.[kπ-$\frac{7}{12}$π,kπ-$\frac{π}{12}$],k∈ZD.[kπ-$\frac{1}{12}$π,kπ+$\frac{5π}{12}$],k∈Z

分析 根據(jù)函數(shù)圖象求出A,ω,φ,利用線性函數(shù)的單調(diào)性列出不等式解出即可.

解答 解:g(x)=f(x-$\frac{π}{6}$)=Asin[ω(x-$\frac{π}{6}$)+φ]=Asin(ωx-$\frac{πω}{6}$+φ).
由圖象可知g(x)的最大值為2,周期T=4×($\frac{π}{3}-\frac{π}{12}$)=π.
∴A=2,$\frac{2π}{ω}=π$,∴ω=2.
∵g($\frac{π}{12}$)=2,∴2sin(-$\frac{π}{6}$+φ)=2,
∴-$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ,即φ=$\frac{2π}{3}$+2kπ.
∵|φ|<π,∴φ=$\frac{2π}{3}$.
∴y=Acos(ωx+φ)=2cos(2x+$\frac{2π}{3}$),
令-π+2kπ≤2x+$\frac{2π}{3}$≤2kπ,解得-$\frac{5π}{6}$+kπ≤x≤-$\frac{π}{3}$+kπ.
故選:A.

點評 本題考查了函數(shù)圖象變換,三角函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則f($\frac{2π}{3}$)=( 。
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和公式為Sn=4an+2,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知非零向量$\overrightarrow{a}$=2$\overrightarrow$+2$\overrightarrow{c}$,|$\overrightarrow$|=|$\overrightarrow{c}$|=1,若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,則|$\overrightarrow{a}$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,其中2012年甲產(chǎn)品生產(chǎn)50萬件,乙產(chǎn)品生產(chǎn)40萬件,該廠今后十年內(nèi),甲產(chǎn)品生產(chǎn)數(shù)量每年平均比上叫年增長10%,乙產(chǎn)品生產(chǎn)數(shù)量每年比上一年增加6萬件,從2012年起的十年內(nèi),甲產(chǎn)品生產(chǎn)件數(shù)構(gòu)成數(shù)列{an},乙產(chǎn)品生產(chǎn)件數(shù)構(gòu)成數(shù)列{bn}.
(1)分別寫出數(shù)列{an},{bn}的通項公式;
(2)判斷該廠2021年生產(chǎn)乙產(chǎn)品的數(shù)量是否超過甲產(chǎn)品生產(chǎn)數(shù)量.((1.1)9≈2.358)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知邊長為12的等邊△ABC中,點D是邊AC上靠近點A的一個三等分點,求點D和$\overrightarrow{BD}$的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.($\sqrt{x}$+$\frac{1}{x}$)10的展開式含x的整數(shù)冪的項數(shù)為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)動點P,Q的坐標分別為(a,b),(c,d)且滿足c=3a+2b+1,d=a+4b-3,如果點P在直線l上移動,點Q也在直線l上移動,這樣的直線l是否存在?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=-x3-mx+$\frac{\sqrt{2}}{2}$(m<0),g(x)=-e-x-1+1(其中e為自然對數(shù)的底數(shù)).
(1)當實數(shù)m為何值時,直線y=2x+$\frac{\sqrt{2}}{2}$與曲線y=f(x)相切;
(2)記函數(shù)h(x)=$\left\{\begin{array}{l}{f(x),(f(x)≤g(x))}\\{g(x),(g(x)<f(x))}\end{array}\right.$x∈R,當m>-1-$\frac{\sqrt{2}}{2}$時,試討論函數(shù)h(x)的零點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案