16.487被7除的余數(shù)為a(0≤a<7),則${(x-\frac{a}{x^2})^6}$展開式中x-3的系數(shù)為(  )
A.4320B.-4320C.20D.-20

分析 先確定487被7除的余數(shù)為a,再利用$(x-\frac{6}{{x}^{2}})^{6}$展開式的通項(xiàng),可得結(jié)論.

解答 解:487=(49-1)7=${C}_{7}^{0}•4{9}^{7}$-${C}_{7}^{1}•4{9}^{8}$+…+${C}_{7}^{6}•49$-1,
∵487被7除的余數(shù)為a(0≤a<7),
∴a=6,
∴$(x-\frac{6}{{x}^{2}})^{6}$展開式的通項(xiàng)為Tr+1=${C}_{6}^{r}•(-6)^{r}•{x}^{6-3r}$,
令6-3r=-3,可得r=3,
∴$(x-\frac{6}{{x}^{2}})^{6}$展開式中x-3的系數(shù)為${C}_{6}^{3}•(-6)^{3}$=-4320,
故選:B.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的運(yùn)用,考查學(xué)生的計(jì)算能力,正確運(yùn)用二項(xiàng)式定理是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P(x,y)與定點(diǎn)A(-2,0),B(2,0)連線的斜率乘積kPA•kPB=-$\frac{1}{4}$.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)直線l不與坐標(biāo)軸垂直,且與軌跡E交于不同兩點(diǎn)M,N,若OM⊥ON,求證:l與以O(shè)為圓心的定圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知曲線C1=$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,曲線C2:ρ=sinθ.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)已知直線l:x+y-8=0,求曲線C1上的點(diǎn)到直線l的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知圓E:${(x+\sqrt{3})^2}+{y^2}$=16,點(diǎn)$F(\sqrt{3},0)$,P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(2)設(shè)直線l與(1)中軌跡Г相交于A,B兩點(diǎn),直線OA,l,OB的斜率分別為k1,k,k2(其中k>0),若恰好成等比數(shù)列,求△OAB的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知n∈N,求證:(1+1)(1+$\frac{1}{4}$)…(1+$\frac{1}{3n-2}$)>$\root{3}{3n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知(x,y)滿足$\left\{\begin{array}{l}y≤3x+3\\ x+y≤6\\ y≥x+3\end{array}\right.$,若z=ax-y取最小值時(shí)有無(wú)數(shù)個(gè)最優(yōu)解,則a=3或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列說(shuō)法正確的是(  )
A.已知p:?x0∈R,x02+x0-1=0,q:?x∈R,x2+x+1>0,則p∧q是真命題
B.命題p:若$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow a•\overrightarrow b=0$的否命題是:若$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow a•\overrightarrow b≠0$
C.?x∈R,x2+x-1<0的否定是?x0∈R,x02+x0-1>0
D.x=$\frac{π}{3}$是$y=sin(2x-\frac{π}{6})$取最大值的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,下列四個(gè)命題正確的是( 。
A.若m、n?α,m∥β,n∥β,則α∥βB.若m?α,α∥β,則m∥β
C.若m⊥α,α⊥β,n∥β,則m⊥nD.若α⊥γ,β⊥γ,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合M={x|y=ln(1-x)},集合N={y|y=x2},則M∩N等于(  )
A.[0,1)B.[0,1]C.(一∞,1)D.(一∞,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案