4.“p∨q為真”是“p為真”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由真值表可知:“p∨q為真命題”則p或q為真命題,故由充要條件定義知p∨q為真”是“p為真”必要不充分條件

解答 解:“p∨q為真命題”則p或q為真命題,
所以“p∨q為真”推不出“p為真”,但“p為真”一定能推出“p∨q為真”,
故“p∨q為真”是“p為真”的必要不充分條件,
故選:B.

點評 本題考查了充分必要條件的判定、復(fù)合命題的真假判定,考查了推理能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)A={1,2,4,5,9},B={4,6,7,8,10},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知點(a,b)與點(2,0)位于直線2x+3y-1=0的同側(cè),且a>0,b>0,則z=a+2b的取值范圍是( 。
A.$(\frac{1}{2},\frac{2}{3})$B.$(-∞,\frac{1}{2})$C.$(\frac{1}{2},+∞)$D.$(\frac{2}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知下列命題:
①有向線段就是向量,向量就是有向線段;
②如果向量$\vec a$與向量$\vec b$平行,則$\vec a$與$\vec b$的方向相同或相反;
③如果向量$\overrightarrow{AB}$與向量$\overrightarrow{CD}$共線,則A,B,C,D四點共線;
④如果$\overrightarrow a$∥$\vec b$,$\vec b$∥$\overrightarrow c$,那么$\overrightarrow a$∥$\overrightarrow c$;
⑤兩個向量不能比較大小,但是他們的模能比較大。
其中正確的命題為( 。
A.①②④⑤B.②④⑤C.D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)函數(shù)y=f(x),x∈R滿足f(x+1)=f(x-1),且當x∈(-1,1]時,f(x)=1-x2,函數(shù)g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,則h(x)=f(x)-g(x)在區(qū)間[-6,9]內(nèi)的零點個數(shù)是( 。
A.15B.14C.13D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.計算:($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+lg$\frac{3}{7}$+lg70+$\sqrt{(lg3)^{2}-lg9+1}$=$\frac{43}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,且其面積$S=\frac{{{a^2}+{b^2}-{c^2}}}{{4\sqrt{3}}}$,則角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,O為直線A0A2015外一點,若A0,A1,A2,A3,A4,A5,…,A2015中任意相鄰兩點的距離相等,設(shè)$\overrightarrow{O{A}_{0}}$=$\overrightarrow{a}$,$\overrightarrow{O{A}_{2015}}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{O{A}_{0}}$+$\overrightarrow{O{A}_{1}}$+…+$\overrightarrow{O{A}_{2015}}$,其結(jié)果為1008($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知不等式ax2+bx+c>0的解集是$\left\{{x\left|{-\frac{1}{2}<x<1}\right.}\right\}$,則cx2-bx+a<0的解集是(-1,2).

查看答案和解析>>

同步練習冊答案