8.實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{(x-y-1)(2x+y-5)≥0}\\{0≤x≤2}\end{array}\right.$,則t=$\frac{x+y}{x+1}$的取值范圍是[-1,5].

分析 畫出滿足條件的平面區(qū)域,結(jié)合圖象以及$\frac{y-1}{x+1}$的幾何意義求出t的范圍即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由t=$\frac{x+y}{x+1}$=$\frac{x+y+1-1}{x+1}$=1+$\frac{y-1}{x+1}$,
$\frac{y-1}{x+1}$的幾何意義表示過(guò)平面區(qū)域內(nèi)的點(diǎn)和(-1,1)的直線的斜率,
結(jié)合圖象直線過(guò)(0,5),(-1,1)時(shí),斜率最大,最大值是:4,此時(shí)t=5,
直線過(guò)(0,-1),(-1,1)時(shí),斜率最小,最小值是:-2,此時(shí)t=-1,
故t的范圍是:[-1,5].

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.我國(guó)人口老齡化日漸突出,2016年初,“二孩”政策全面實(shí)施,根據(jù)國(guó)家統(tǒng)計(jì),在2015年初,中國(guó)大陸人口總數(shù)約13.7億,人口出生率約為12‰,人口死亡率約為7‰,人口增長(zhǎng)率約為5‰,其中人口年齡比例如下表:
年齡段16周歲以下 17至59周歲(勞動(dòng)年齡)  60周歲及以上
   68%16%
(I)假設(shè)每個(gè)年齡段內(nèi)的人口按年齡均勻分布,在當(dāng)前人口增長(zhǎng)率的條件下,10年后中國(guó)勞動(dòng)年齡人口占比為多少?(1.00510≈1.05,0.99310≈0.93)
(Ⅱ)事實(shí)上每個(gè)年齡段的人口分布是不均勻的,假設(shè)在17至59周歲人口年齡分布情況中,年齡Y服從如圖正態(tài)分布N(μ,σ2),其中正態(tài)曲線頂點(diǎn)P的坐標(biāo)為(38,$\frac{1}{6\sqrt{2π}}$).利用正態(tài)分布的知識(shí),求P(32<Y<44).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)直角坐標(biāo)系xoy內(nèi)的一點(diǎn)P(m,n),且滿足$\frac{1+i}{2-i}$=$\frac{m+ni}{5}$(i是虛數(shù)單位),則mn=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.圓x2+y2-8x+6y=0的圓心坐標(biāo)為(4,-3),半徑為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.假如你是一名交通部門工作人員,你打算向市長(zhǎng)報(bào)告國(guó)家對(duì)本市26個(gè)公路項(xiàng)目的平均資金數(shù)額,其中一條新公路的建設(shè)投資為2000萬(wàn)元人民幣,另外25個(gè)項(xiàng)目的投資是20~100萬(wàn)元,中位數(shù)是25萬(wàn)元,平均數(shù)是100萬(wàn)元,眾數(shù)是20萬(wàn)元,你會(huì)選擇哪一個(gè)數(shù)字特征來(lái)表示國(guó)家對(duì)每一個(gè)項(xiàng)目投資的平均金額?( 。
A.平均數(shù)B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)f(x)=x2-x-$\frac{4x}{x-1}$(x<0),g(x)=x2+bx-2(x>0),b∈R,若f(x)圖象上存在兩個(gè)不同點(diǎn)A,B與g(x)圖象上兩點(diǎn)A′,B′關(guān)于y軸對(duì)稱,則b的取值范圍是(4$\sqrt{2}$-5,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.△ABC中,cosA=$\frac{1}{3}$,AB=2,則$\overrightarrow{CA}•\overrightarrow{CB}$的最小值是-$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)命題p:函數(shù)f(x)=ln(x2-ax+a)的定義域?yàn)閷?shí)數(shù)集R,命題q:a≤x+$\frac{1}{x}$對(duì)任意正實(shí)數(shù)x恒成立,若復(fù)合命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的兩焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),橢圓的上頂點(diǎn)M滿足$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_2}M}$=0.
(Ⅰ)求橢圓C的離心率e;
(Ⅱ)若以點(diǎn)N(0,2)為圓心,且與橢圓C有公共點(diǎn)的圓的最大半徑為$\sqrt{26}$.
(。┣蟠藭r(shí)橢圓C的方程;
(ⅱ)橢圓C上是否存在兩點(diǎn)A,B關(guān)于直線l:y=kx-1(k≠0)對(duì)稱,若存在,求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案