分析 畫出約束條件的可行域,化簡(jiǎn)所求表達(dá)式,利用表達(dá)式的幾何意義,求解即可.
解答 解:x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$的可行域如圖:
則$\frac{x+2y}{2x+y}$=$\frac{x+\frac{1}{2}y+\frac{3}{2}y}{2x+y}$=$\frac{1}{2}$+$\frac{3}{4\frac{x}{y}+2}$.
由可行域可知:$\frac{y}{x}$∈[1,kOA],由$\left\{\begin{array}{l}{x-1=0}\\{x+y-4=0}\end{array}\right.$,可得A(1,3),
kOA=3,
$\frac{4x}{y}$∈$[\frac{4}{3},4]$,$\frac{4x}{y}$+2∈$[\frac{10}{3},6]$,
$\frac{3}{4\frac{x}{y}+2}$∈$[\frac{1}{2},\frac{9}{10}]$,
則$\frac{x+2y}{2x+y}$∈[1,$\frac{7}{5}$].
故答案為:[1,$\frac{7}{5}$].
點(diǎn)評(píng) 本題考查了利用線性規(guī)劃求目標(biāo)函數(shù)的值域,一般分兩步進(jìn)行:1、根據(jù)不等式組,作出不等式組表示的平面區(qū)域;2、由目標(biāo)函數(shù)的特點(diǎn)及幾何意義,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為圖形之間的關(guān)系問題求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin2x+cos2x | B. | $y=cos(2x+\frac{π}{2})$ | C. | y=cos(2x-1) | D. | y=cos2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “a2>9”是“a>3”的充分不必要條件 | |
B. | “?x0∈R,使得$sin{x_0}+\frac{2}{{sin{x_0}}}>2\sqrt{2}$”的否定是“$?x∈R,sinx+\frac{2}{sinx}<2\sqrt{2}$” | |
C. | 若A∧B是假命題,則A∨B是假命題 | |
D. | “若a<0,則x2+ax+a<0有解”的否命題為“若a≥0,則x2+ax+a<0無解” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限或x軸正半軸上 | B. | 第二象限或x軸負(fù)半軸上 | ||
C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com