已知函數(shù)f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2
(ω>0),0<φ<
π
2
).其圖象的兩個(gè)相鄰對(duì)稱中心的距離為
π
2
,且過點(diǎn)(
π
6
,
3
2
),則φ
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì)
分析:先利用二倍角公式和兩角和公式對(duì)函數(shù)解析式化簡(jiǎn),進(jìn)而根據(jù)對(duì)稱中心的距離求得周期,則ω可求,最后根據(jù)點(diǎn)(
π
6
,
3
2
),求得φ.
解答: 解:f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2
=
3
2
sin(ωx+φ)-
cos(ωx+φ)
2
+
1
2
=sin(ωx+φ-
π
6
)+
1
2
,
∵圖象的兩個(gè)相鄰對(duì)稱中心的距離為
π
2

∴函數(shù)的周期T=π,
∴ω=
T
=2,
∴f(x)=sin(2x+φ-
π
6
)+
1
2
,
f(
π
6
)=sin(
π
3
+φ-
π
6
)+
1
2
=
3
2

∴sin(φ+
π
6
)=1,
∴φ+
π
6
=2kπ+
π
2
,
∴φ=2kπ+
π
3
,k∈Z,
∵0<φ<
π
2
,
∴φ=
π
3
點(diǎn)評(píng):本題主要考查了三角函數(shù)圖象與性質(zhì),三角函數(shù)恒等變換的應(yīng)用.考查了學(xué)生對(duì)三角函數(shù)性質(zhì)和圖象的熟練記憶.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y的回歸方程為y=bx+a,若b=0.53,
.
x
=61.75,
.
y
=38.14,則回歸方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=x3在點(diǎn)(1,1)處的切線和曲線y=ax2+10x-9也相切,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示橢圓中,P為橢圓上一點(diǎn),F(xiàn)為其一個(gè)焦點(diǎn),PF為直徑的圓與長(zhǎng)軸為直徑的圓的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
|x+1|+|x+2|-a

(1)當(dāng)a=5時(shí),求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的定義域?yàn)镽,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A(2,3)到直線3x-4y+2=0的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合{1,2,3,4,5}中任取一個(gè)偶數(shù)a和一個(gè)奇數(shù)b構(gòu)成以原點(diǎn)為起點(diǎn)的向量
a
=(a,b),從所有得到的以原點(diǎn)為起點(diǎn)的向量中任取兩個(gè)向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個(gè)數(shù)為t,在區(qū)間(1,
t
3
)和(2,4)內(nèi)分別各取一個(gè)數(shù),記為m和n,則方程
x2
m2
+
y2
n2
=1表示焦點(diǎn)在x軸上的橢圓的概率P為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD-A1B1C1D1是正方體,在底面A1B1C1D1上任取一點(diǎn)M,則∠MAA1
π
6
的概率P=( 。
A、
π
15
B、
π
12
C、
π
9
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合S={x||x-1|≤2,x∈R},T={x|
5
x+1
≥0,x∈Z},則S∩T=(  )
A、{x|0<x<3,x∈Z}
B、{x|0≤x≤3,x∈Z}
C、{x|-1≤x≤3,x∈Z}
D、{x|-1<x<3,x∈Z}

查看答案和解析>>

同步練習(xí)冊(cè)答案