在集合{1,2,3,4,5}中任取一個偶數(shù)a和一個奇數(shù)b構(gòu)成以原點為起點的向量
a
=(a,b),從所有得到的以原點為起點的向量中任取兩個向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個數(shù)為t,在區(qū)間(1,
t
3
)和(2,4)內(nèi)分別各取一個數(shù),記為m和n,則方程
x2
m2
+
y2
n2
=1表示焦點在x軸上的橢圓的概率P為
 
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:本題是一個幾何概型,a的取法有2中,b的取法有3中,得到可以組成向量的個數(shù),從中任取兩個向量共C62種取法,再確定平面區(qū)域及相應(yīng)的面積,根據(jù)概率公式得到結(jié)果.
解答: 解:由題意知本題是一個幾何概型,試驗發(fā)生包含的事件是取出數(shù)字,構(gòu)成向量,a的取法有2種,b的取法有3種,故向量
a
有6個,從中任取兩個向量共C62=15種取法,即t=15;
∴區(qū)間[1,5]和[2,4]圍成一個矩形,面積為8,
其中滿足m>n的區(qū)域如圖所示,面積為
(1+3)×2
2
=4,
∴方程
x2
m2
+
y2
n2
=1表示焦點在x軸上的橢圓的概率是=
4
8
=
1
2

故答案為:
1
2
點評:本題考查幾何概型及其概率計算公式,考查組合數(shù)問題、考查平面區(qū)域及面積的計算,綜合性強.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果對于任意實數(shù)a,b(a<b),隨機變量X滿足P(a<X≤b)=
b
a
φμ,σ(x)dx,稱隨機變量X服從正態(tài)分布,記為N(μ,σ2),若X~N(0,1),P(X>1)=
1
3
,則
0
-1
φμ,σ(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(1-x)(x+1)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2
(ω>0),0<φ<
π
2
).其圖象的兩個相鄰對稱中心的距離為
π
2
,且過點(
π
6
,
3
2
),則φ
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinθ+cosθ=
3
5
5
,θ∈(0,
π
4
),則cos2θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,M是BC邊的中點,則向量
AM
等于( 。
A、
AB
-
AC
B、
1
2
AB
-
AC
C、
AB
+
AC
D、
1
2
AB
+
AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β是方程x2-8x+k2=0的兩根,且α,αβ,β成等差數(shù)列,則k=( 。
A、2B、4C、±2D、±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足條件
x-1≥0
x-2y+3≥0
x-y≤0
,則x+2y的最小值等于(  )
A、3B、4C、5D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos2α
cos(
π
4
+α)
=
1
2
,則cosα+sinα=(  )
A、
1
2
B、
2
2
C、
1
4
D、
2
4

查看答案和解析>>

同步練習(xí)冊答案