4.設(shè)復(fù)數(shù)z1=2-i,z2=a+2i(i是虛數(shù)單位,a∈R),若x1x2∈R,則a等于( 。
A.1B.-1C.4D.-4

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,再由虛部等于0求得a值.

解答 解:∵z1=2-i,z2=a+2i,
∴z1z2=(2-i)(a+2i)=2a+2+(4-a)i,
又z1z2∈R,
∴4-a=0,即a=4.
故選:C.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$與$\overrightarrow$的夾角余弦為$\frac{1}{5}$,$\overrightarrow$與$\overrightarrow{c}$的夾角余弦為為-$\frac{1}{3}$,|$\overrightarrow$|=1,則$\overrightarrow{a}$•$\overrightarrow{c}$的值為$\frac{26\sqrt{3}+51}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左焦點(diǎn)為F(-1,0),且橢圓上的點(diǎn)到點(diǎn)F的距離最小值為$\sqrt{2}-1$.
(1)求橢圓的方程;
(2)已知經(jīng)過點(diǎn)F的動直線l與橢圓交于不同的兩點(diǎn)A,B,點(diǎn)$M(-\frac{5}{4},0)$,證明:$\overline{MA}•\overline{MB}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,既是偶函數(shù),又是區(qū)間(0,3)內(nèi)是增函數(shù)的是(  )
A.y=log${\;}_{\frac{1}{2}}$|x|B.y=cosxC.y=ex+e-xD.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$個單位后的圖象關(guān)于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為( 。
A.0B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=cos(x-$\frac{π}{3}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個單位,所得函數(shù)圖象的一條對稱軸是直線( 。
A.x=$\frac{π}{3}$B.x=$\frac{π}{8}$C.x=πD.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,?a∈R,都有f(a)+f(-a)=1成立的是( 。
A.f(x)=ln$\sqrt{1+{x}^{2}}$B.f(x)=cos2(x-$\frac{π}{4}$)C.f(x)=$\frac{(x-1)^{2}}{1+{x}^{2}}$D.f(x)=$\frac{{2}^{x}}{{2}^{x}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)m、n分別為連續(xù)兩次投擲骰子得到的點(diǎn)數(shù),且向量$\overrightarrow{a}$=(m,n),$\overrightarrow$=(1,-1),則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對應(yīng)的邊分別是a,b,c,向量$\overrightarrow{m}$=(a-c,b+c),$\overrightarrow{n}$=(b-c,a),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求B;
(2)若b=$\sqrt{13}$,cos(A+$\frac{π}{6}$)=$\frac{3\sqrt{39}}{26}$,求a.

查看答案和解析>>

同步練習(xí)冊答案