17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{|x-5|-1,3≤x≤7}\end{array}\right.$(a>0且a≠1)的圖象上關于直線x=1對稱的點有且僅有一對,則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{7}$,$\frac{1}{5}$]∪{3}B.[3,5)∪{$\frac{1}{7}$}C.[$\frac{1}{7}$,$\frac{1}{3}$]∪{5}D.[3,7)∪{$\frac{1}{5}$}

分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{|x-5|-1,3≤x≤7}\end{array}\right.$(a>0且a≠1)的圖象上關于直線x=1對稱的點有且僅有一對,則函數(shù)y=logax,與y=|x-5|-1上有且只有一個交點,解得:實數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{|x-5|-1,3≤x≤7}\end{array}\right.$(a>0且a≠1)的圖象上關于直線x=1對稱的點有且僅有一對,
∴函數(shù)y=logax,與y=|x-5|-1上有且只有一個交點,

當對數(shù)函數(shù)的圖象過(5,-1)點時,a=$\frac{1}{5}$,
當對數(shù)函數(shù)的圖象過(3,1)點時,a=3,
當對數(shù)函數(shù)的圖象過(7,1)點時,a=7,
故a[3,7)∪{$\frac{1}{5}$},
故選:D

點評 本題考查的知識點是分段函數(shù)的應用,函數(shù)的圖象,數(shù)形結(jié)合思想,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知直角△ABC的頂點A的坐標為(-2,0),直角頂點B的坐標為(1,$\sqrt{3}$),頂點C在x軸上.
(1)求邊BC所在直線的方程;
(2)求直線△ABC的斜邊中線所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.下列說法中,正確說法的序號是②④.
①若x≠0,則x+$\frac{1}{x}$≥2;②若xy>0,則$\frac{y}{x}$+$\frac{x}{y}$≥2;
③若θ為銳角,則sinθ+$\frac{1}{sinθ}$最小值為2;④若x+y=0,則2x+2y≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù).說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.等差數(shù)列{an}中,a1=25,S17=S9,則當n=13時,Sn有最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知集合P={y|y=-x2+2,x∈R},Q={x|y=$\sqrt{2x-4}$},那么P∩Q={2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.滿足{1}?M?{1,2,3}的集合M的個數(shù)是(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.以正方體ABCDA1B1C1D1的棱AB,AD,AA1所在的直線為x,y,z軸建立空間直角坐標系,且正方體的棱長為一個單位長度,則棱CA1中點的坐標為($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓.經(jīng)測量,點A位于點O正北方向60m處,點C位于點O正東方向170m處(OC為河岸),tan∠BCO=$\frac{4}{3}$.
(1)當點M與A重合時,求圓形保護區(qū)的面積;
(2)若古橋兩端O和A到該圓上任意一點的距離均不少于80m.當OM多長時,點M到直線BC的距離最。

查看答案和解析>>

同步練習冊答案