已知數(shù)列中,
(1)求,;
(2)求證:是等比數(shù)列,并求的通項(xiàng)公式;
(3)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.
(1);(2);(3).
解析試題分析:(1)直接將代入即可求出結(jié)果;
(2)對(duì)遞推公式化簡(jiǎn)可得,即可證明結(jié)果;
(3)求出,利用錯(cuò)位相減可求出再根據(jù)恒成立條件即可求出結(jié)果.
試題解析:解:(1) 2分
(2)由得
即 4分
又
所以是以為首項(xiàng),3為公比的等比數(shù)列. 6分
所以
即 8分
(3) 9分
兩式相減得
11分
若為偶數(shù),則
若為奇數(shù),則
14分
考點(diǎn):1.等比數(shù)列的性質(zhì)和前n項(xiàng)和;2.錯(cuò)位相減;3不等式恒成立問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、.若,,成等比數(shù)列,求此橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2011•山東)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在個(gè)實(shí)數(shù)組成的行列數(shù)表中,先將第一行的所有空格依次填上,,,再將首項(xiàng)為公比為的數(shù)列依次填入第一列的空格內(nèi),然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)律填寫(xiě)其它空格
| 第1列 | 第2列 | 第3列 | 第4列 | | 第列 |
第1行 | | |||||
第2行 | | | | | | |
第3行 | | | | | | |
第4行 | | | | | | |
| | | | | | |
第行 | | | | | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當(dāng)時(shí),數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,
(1)求數(shù)列的通項(xiàng);
(2)令求數(shù)列的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com