13.點(diǎn)P(1,t),Q(t2,t-1)均在直線x+y-1=0的上方,則t的取值范圍為(1,+∞).

分析 由題意可知點(diǎn)P(1,t),Q(t2,t-1)均在直線x+y-1=0的上方,代入方程有1+t-1>0且 t2+t-1-1>0,求解即可.

解答 解:在平面直角坐標(biāo)系中,若點(diǎn)P(1,t),Q(t2,t-1)均在直線x+y-1=0的上方,
必有1+t-1>0且 t2+t-1-1>0可得t>1
故答案為:(1,+∞).

點(diǎn)評 本題考查直線與點(diǎn)的位置關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正方形ABCD的邊長為2,E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn).
(1)在正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,求滿足|PE|<1的概率;
(2)從A、B、C、D、E、F、G、H這八個點(diǎn)中,隨機(jī)選取兩個點(diǎn),記這兩個點(diǎn)之間的距離的平方為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在斜三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,∠AA1B=∠AA1C1=60°,∠BB1C1=90°,側(cè)棱長AA1=3.
(1)求此三棱柱的表面積;
(2)若${V_{棱柱}}={S_{△{B_1}D{C_1}}}•A{A_1}$,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等比數(shù)列{an}中a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個正整數(shù),得到數(shù)列{bn},即:a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2016項(xiàng)之和S2016=2013062(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知復(fù)數(shù)z1=i(1-i)3
(1)求|z1|;
(2)若|z|=1,求|z-z1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在兩個學(xué)習(xí)基礎(chǔ)相當(dāng)?shù)陌嗉墝?shí)行某種教學(xué)措施的實(shí)驗(yàn),測試結(jié)果見表,則在犯錯誤的概率不超過0.005的前提下推斷實(shí)驗(yàn)效果與教學(xué)措施.P(k2>7.879)≈0.005( 。
優(yōu)、良、中總計(jì)
實(shí)驗(yàn)班48250
對比班381250
總計(jì)8614100
A.有關(guān)B.無關(guān)C.關(guān)系不明確D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{{5-{a_n}}}{2},{b_n}={2^{c_n}}$,記數(shù)列{log2bn}的前n項(xiàng)和為Tn,求滿足不等式Tn≥2016的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.袋中裝著標(biāo)有數(shù)學(xué)1,2,3,4,5的小球各2個,從袋中任取3個小球,按3個小球上最大數(shù)字的5倍記分,每個小球被取出的可能性都相等,用X表示取出的3個小球上的最大數(shù)字,求:
(1)取出的3個小球上的數(shù)字互不相同的概率;
(2)隨機(jī)變量X的分布列.
(3)記分介于18分到28分之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段圖象.
(Ⅰ)求φ的值及函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案