14.若點(diǎn)P(x0,2)為拋物線E:y2=4x上一點(diǎn),則點(diǎn)P到拋物線E的焦點(diǎn)的距離為( 。
A.2B.$\sqrt{5}$C.3D.4

分析 利用點(diǎn)P(x0,2)為拋物線E:y2=4x上一點(diǎn),求出x0=1,根據(jù)拋物線的定義可知點(diǎn)P到拋物線焦點(diǎn)的距離為x0+1,進(jìn)而求解.

解答 解:∵點(diǎn)P(x0,2)為拋物線E:y2=4x上一點(diǎn),
∴x0=1
∵拋物線y2=4x=2px,
∴p=2,
由拋物線的定義知的,點(diǎn)P到拋物線焦點(diǎn)的距離為點(diǎn)P到準(zhǔn)線的距離x0+1═1+1=2,
故選:A.

點(diǎn)評(píng) 本題主要考查了拋物線的定義,充分利用了拋物線上的點(diǎn)到準(zhǔn)線的距離與點(diǎn)到焦點(diǎn)的距離相等這一特性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知AB是圓x2+y2=1的一條直徑,點(diǎn)P在圓(x-4)2+(y-3)2=1上,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為( 。
A.15B.17C.24D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若i是虛數(shù)單位,復(fù)數(shù)z=$\frac{i}{2+i}$的虛部為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線x2=-4y的準(zhǔn)線與雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩條漸近線圍成一個(gè)面積為1的三角形,則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(x2-2x-2)4的展開式中,x3的系數(shù)為-32.(用數(shù)字填寫答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖1,在平行四邊形ABCD中,AB=2AD,E,F(xiàn)分別為AB,CD的中點(diǎn),沿EF將四邊形AEFD折起到新位置變?yōu)樗倪呅蜛′EFD′,使A′B=A′F(如圖2所示).
(1)證明:A′E⊥BF;
(2)若∠BAD=60°,A′E=$\sqrt{2}$A'B=2,求多面體A′BE-D′CF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x2+2ax+1-a.
(1)若a=1,求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)在區(qū)間[0,1]上的最大值是2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義運(yùn)算a*b為執(zhí)行如圖所示的程序框圖輸出的S值,則(sin$\frac{π}{3}}$)*(cos$\frac{π}{3}}$)的值為(  )
A.$\frac{{2-\sqrt{3}}}{4}$B.$\frac{{2+\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△OAB的直觀圖△O′A′B′如圖所示,且O′A′=O′B′=2,則△OAB的面積為( 。
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案