5.設(shè)集合A={x|x<3},集合B={x|$\frac{2}{9-x}$>0},則(∁RA)∩B等于( 。
A.(3,9)B.[3,9]C.(3,9]D.[3,9)

分析 求出集合的等價(jià)條件,即可得到結(jié)論.

解答 解:B={x|$\frac{2}{9-x}$>0}={x|x<9},
∵A={x|x<3},
∴∁RA={x|x≥3},
則(∁RA)∩B={x|3≤x<9},
故選:D

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,要求熟練掌握集合的交并補(bǔ)運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知正項(xiàng)數(shù)列{an}滿足an+12-6an2=an+1an,若a1=2,則數(shù)列{an}的前n項(xiàng)和為3n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知A(-3,2),B(0,-2),則|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求證:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如果對(duì)任意實(shí)數(shù)x、y都有f(x+y)=f(x)•f(y)且f(1)=2
(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x3+ax2+bx+c(a,b為常數(shù)),且有x=1的切線為y=$-\frac{1}{2}$.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知a>0,函數(shù)f(x)=lnx-ax.
(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為L(zhǎng),若L與圓(x+1)2+y2=1相切,求a的值.
(2)求f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知點(diǎn)An(xn,yn),Bn(sn,tn)(n∈N*)是拋物線x2=4y上不同的兩點(diǎn),設(shè)拋物線在點(diǎn)An,Bn,處的兩條切線相互垂直,垂足為點(diǎn)Cn
(1)求xnsn的值;
(2)設(shè)F為拋物線x2=4y的焦點(diǎn),若xn=2n,當(dāng)n≥2時(shí),求證:$\sum_{k=1}^{n}$|FCk|≥$\frac{{n}^{2}+n+3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且an=nsin$\frac{nπ}{2}$+$\frac{1}{2}$,則S2015=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案