3.已知冪函數(shù)y=(m-1)2•x${\;}^{{m^2}-4m+2}}$在(0,+∞)上單調(diào)遞增,則m的值為0.

分析 根據(jù)冪函數(shù)的定義求出m的值,結(jié)合冪函數(shù)的單調(diào)性進(jìn)行求解即可.

解答 解:∵f(x)是冪函數(shù),
∴(m-1)2=1,得m=0,或m=2,
∵f(x)在(0,+∞)上單調(diào)遞增,
∴m2-4m+2>0,
則當(dāng)m=0時(shí),2>0成立,
當(dāng)m=2時(shí),4-8+2=-2>0,不成立,
故答案為:0.

點(diǎn)評(píng) 本題主要考查冪函數(shù)的定義和性質(zhì),根據(jù)冪函數(shù)的定義求出m的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+$\frac{a}{x}$(a為實(shí)常數(shù)).
(1)若f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)判斷是否存在直線l與f(x)的圖象有兩個(gè)不同的切點(diǎn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖所示程序框圖,則輸出的結(jié)果是( 。
A.$\frac{1}{6}$B.$\frac{3}{4}$C.$\frac{9}{10}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知全集U=R,A=$\left\{{x\left|{\left.{\frac{x+1}{2-x}≥0}\right\}}\right.}$,B={x|lnx<0},則A∪B=(  )
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|x<-1或x≥2}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x-3,2),且$\overrightarrow a$⊥$\overrightarrow b$.
(Ⅰ)求x的值;
(Ⅱ)試確定實(shí)數(shù)k的值,使k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F到雙曲線$\frac{x^2}{3}$-y2=1的漸近線的距離為l,過(guò)焦點(diǎn)F且斜率為k的直線與拋物線C交于A,B兩點(diǎn),若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則|k|=(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$2\sqrt{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=-2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,點(diǎn)O為底面ABCD的中心,在正方體ABCD-A1B1C1D1內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)O的距離大于2的概率為1-$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,若輸出的y值為5,則判斷框中可填入的條件是( 。
A.i<3B.i<4C.i<5D.i<6

查看答案和解析>>

同步練習(xí)冊(cè)答案