用1,2,3,4,組成不含重復(fù)數(shù)字的四位數(shù),其中數(shù)字1,3相鄰的概率是
 
考點(diǎn):古典概型及其概率計(jì)算公式,等可能事件的概率
專題:概率與統(tǒng)計(jì)
分析:由計(jì)數(shù)原理得到基本事件總數(shù),以及事件“數(shù)字1,3相鄰”包含的基本事件個(gè)數(shù),從而可得結(jié)論.
解答: 解:用1,2,3,4,組成不含重復(fù)數(shù)字的四位數(shù),即對(duì)這4個(gè)數(shù)作全排列,
則所有的基本事件共有
A
4
4
=24種,
數(shù)字1,3相鄰即為把1,3捆綁,再與2、4作全排列,
則事件“數(shù)字1,3相鄰”包含的基本事件個(gè)數(shù)為
A
2
2
A
3
3
=12種,
故用1,2,3,4,組成不含重復(fù)數(shù)字的四位數(shù),其中數(shù)字1,3相鄰的概率是
12
24
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查等可能事件的概率,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2
x+1
x-1
,g(x)=log2(x-1)
(1)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性,并用定義證明;
(2)記函數(shù)h(x)=g(2x+2)+kx,問:是否存在實(shí)數(shù)k使得函數(shù)h(x)為偶函數(shù)?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
4
-
y2
3
=1的左,右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l交雙曲線左支于A,B兩點(diǎn),則|BF2|+|AF2|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對(duì)定義在R上的函數(shù)f(x),對(duì)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù)①y=x2;②y=ex+1;③y=2x-sinx;④f(x)=
ln|x|
 
 
 
x≠0
0
 
 
 
 
 
 
x=0
.以上函數(shù)是“H函數(shù)”的所有序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果把四個(gè)面都是直角三角形的四面體稱為“三節(jié)棍體”,那么從長方體八個(gè)頂點(diǎn)中任取四個(gè)頂點(diǎn),則這四個(gè)頂點(diǎn)是“三節(jié)棍體”的四個(gè)頂點(diǎn)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2(m+1)x2-1與函數(shù)g(x)=4mx-2m有兩個(gè)交點(diǎn),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1:2x-my-1=0,l2:(m-1)x-y+1=0.則“m=2”是“l(fā)1∥l2”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的函數(shù)是( 。
A、f(x)=|tan2x|
B、f(x)=-|x+1|
C、f(x)=
1
2
(2-x-2x
D、f(x)=log
3
2
2-x
2+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cosx+2
3
sinx,1),向量
n
=(cosx,-y),x,y∈R.
(1)若
m
n
,且y=1,求tan(x+
π
6
)的值;
(2)若
m
n
,設(shè)y=f(x),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案