【題目】已知橢圓的中心在原點(diǎn),其中一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右焦點(diǎn)分別為,過的直線與橢圓相交于兩點(diǎn),若的面積為,求以為圓心且與直線相切的圓的方程.

【答案】(1) ;(2) .

【解析】試題分析:(1)求出的焦點(diǎn)坐標(biāo)為,,設(shè)橢圓的方程為通過,又點(diǎn)在橢圓上,列出方程組求解橢圓的方程.
(2)設(shè)直線的方程為,

,

設(shè),利用韋達(dá)定理,弦長(zhǎng)公式點(diǎn)到直線的距離公式表示三角形的面積,求解,然后求解圓的方程.

試題解析:由題意, 的焦點(diǎn)坐標(biāo)為,

故設(shè)橢圓的方程為,

又點(diǎn)在橢圓上,于是

2)設(shè)直線的方程為,

設(shè),其中就是上述方程的兩個(gè)根,

所以

點(diǎn)到直線的距離為

所以

解得

設(shè)欲求圓的半徑為

所以,此圓方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種水果按照肉質(zhì)和口感可分為四類:標(biāo)準(zhǔn)果,優(yōu)質(zhì)果,精品果,禮品果,某采購(gòu)商從采購(gòu)的一批水果中隨機(jī)抽取100個(gè)(每個(gè)水果的重量相當(dāng)),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

個(gè)數(shù)

10

30

40

20

1)用樣本估計(jì)總體,果園老板提出兩種購(gòu)銷方案給采購(gòu)商參考:

方案①:不分類賣出,單價(jià)為20/.

方案②:分類賣出,分類后的水果售價(jià)如下表:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

售價(jià)(元/

16

18

22

24

從采購(gòu)商的角度考慮,應(yīng)該采用哪種方案較好?并說明理由.

2)從這100個(gè)水果中用分層抽樣的方法抽取10個(gè),再?gòu)某槿〉?/span>10個(gè)水果中隨機(jī)抽取2個(gè),求抽取的2個(gè)水果不是同一級(jí)別水果的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù)且.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),,若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了考核甲,乙兩部門的工作情況,隨機(jī)訪問了50位市民,根據(jù)這50位市民對(duì)這兩部門的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越高),繪制莖葉圖如下:

1)分別估計(jì)該市的市民對(duì)甲,乙兩部門評(píng)分的中位數(shù);

2)分別估計(jì)該市的市民對(duì)甲,乙兩部門的評(píng)分高于90的概率;

3)根據(jù)莖葉圖分析該市的市民對(duì)甲,乙兩部門的評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司近年來特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬元)對(duì)年創(chuàng)新產(chǎn)品銷售額(單位:十萬元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷售額(其中)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

其中,,,

.現(xiàn)擬定關(guān)于的回歸方程為.

1)求,的值(結(jié)果精確到)

2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為萬元時(shí),年創(chuàng)新產(chǎn)品銷售額是多少?

參考公式:

求線性回歸方程系數(shù)公式 ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地村莊P與村莊O的距離為千米,從村莊O出發(fā)有兩條道路,經(jīng)測(cè)量,的夾角為,OP與的夾角滿足(其中),現(xiàn)要經(jīng)過P修一條直路分別與道路交匯于兩點(diǎn),并在處設(shè)立公共設(shè)施.

(1)已知修建道路的單位造價(jià)分別為2m元/千米和m元/千米,若兩段道路的總造價(jià)相等,求此時(shí)點(diǎn)之間的距離;

(2)考慮環(huán)境因素,需要對(duì)段道路進(jìn)行翻修,段的翻修單價(jià)分別為n元/千米和元/千米,要使兩段道路的翻修總價(jià)最少,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)為.若為線段的中點(diǎn),則在翻轉(zhuǎn)過程中,有下列命題:

是定值;

②點(diǎn)在圓上運(yùn)動(dòng);

③一定存在某個(gè)位置,使;

④若平面,則平面

其中正確的個(gè)數(shù)為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】流行性感冒多由病毒引起,據(jù)調(diào)查,空氣相對(duì)濕度過大或過小時(shí),都有利于一些病毒的繁殖和傳播.科學(xué)測(cè)定,當(dāng)空氣相對(duì)濕度大于65%或小于40%時(shí),病毒繁殖滋生較快,當(dāng)空氣相對(duì)濕度在45%—55%時(shí),病毒死亡較快,現(xiàn)隨機(jī)抽取了全國(guó)部分城市,獲得了它們的空氣月平均相對(duì)濕度共300個(gè)數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表,其中為了記錄方便,將空氣相對(duì)濕度在%~%時(shí)記為區(qū)間

(I)求上述數(shù)據(jù)中空氣相對(duì)濕度使病毒死亡較快的頻率;

(Ⅱ)從區(qū)間[ 15,35)的數(shù)據(jù)中任取兩個(gè)數(shù)據(jù),求恰有一個(gè)數(shù)據(jù)位于[25,35)的概率;

(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中空氣月平均相對(duì)濕度的平均數(shù)在第幾組(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=A cos(ωxφ)(A>0,ω>0)的部分圖象如圖所示,下面結(jié)論錯(cuò)誤的是(  )

A. 函數(shù)f(x)的最小正周期為

B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個(gè)單位長(zhǎng)度得到

C. 函數(shù)f(x)的圖象關(guān)于直線x對(duì)稱

D. 函數(shù)f(x)在區(qū)間上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案