19.如圖,在斜二測畫法下,四邊形A′B′C′D′是下底角為45°的等腰梯形,其下底長為5,一腰長為$\sqrt{2}$,則原四邊形的面積是( 。
A.2$\sqrt{2}$B.4$\sqrt{2}$C.6$\sqrt{2}$D.8$\sqrt{2}$

分析 根據(jù)已知求出直觀圖的面積,根據(jù)原圖面積=直觀圖面積的$2\sqrt{2}$倍,得到答案.

解答 解:∵四邊形A′B′C′D′是下底角為45°的等腰梯形,其下底長為5,一腰長為$\sqrt{2}$,
∴梯形的高為1,上底為3,
故面積為4,
故原四邊形的面積S=4×$2\sqrt{2}$=8$\sqrt{2}$,
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是斜二側(cè)畫法畫直觀圖,熟練掌握原圖面積=直觀圖面積的$2\sqrt{2}$倍,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)y=f(x)是定義域?yàn)镽,當(dāng)x≥0時(shí),$f(x)=\left\{\begin{array}{l}3sin\frac{π}{2}x,0≤x≤1\\{2^{2-x}}+1,x>1\end{array}\right.$.函數(shù)g(x)=x2-2ax+a2-1(a∈R).若函數(shù)y=g(f(x))有且僅有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(1,2]B.(1,2)C.(2,3]D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p為真命題,q為假命題,則下列命題中為真命題的是( 。
A.p∧qB.(¬p)∧(¬q)C.p∨qD.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.有下列函數(shù):①y=$\frac{{{x^2}+1}}{|x|}$;②y=x2-1,x∈(-2,2];③y=x3;④y=x-1,其中是偶函數(shù)的有( 。
A.B.①③C.①②D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2x+a,g(x)=$\frac{1}{{{2^{|x|}}}}$+2.
(1)求函數(shù)g(x)的值域;
(2)若a=0,求滿足方程f(x)-g(x)=0的x的值.
(3)?x0∈[1,2],f(x)+g(x)≥0成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題“?x>0,x2≠x”的否定是( 。
A.?x>0,x2=xB.?x≤0,x2=xC.?x>0,x2=xD.?x≤0,x2=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l在x軸和y軸上的截距相等,且與圓C:(x-2)2+(y-3)2=1相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=(x-2)2+1,x∈(-∞,0]的反函數(shù)f-1(x)=${f^{-1}}(x)=2-\sqrt{x-1}$,x∈[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集I=R,集合A={y|y=log2x,x>2},B={y|y≥1},則(  )
A.A∪B=AB.A⊆BC.A∩B=∅D.A∩(∁IB)≠∅

查看答案和解析>>

同步練習(xí)冊答案