8.下列命題中錯誤的是( 。
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α⊥平面β,過α內(nèi)任意一點作交線的垂線,那么此垂線必垂直于β
D.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β

分析 根據(jù)有關(guān)定理中的諸多條件,對每一個命題逐一分析、判定,將由條件可能推出的結(jié)論進(jìn)行逐一列舉說明即可.

解答 解:對于A,平面α⊥平面γ,平面β⊥平面γ,α∩β=l,則l⊥γ,命題正確;
對于B,平面α⊥平面β,不妨設(shè)α∩β=a,作直線b∥a,且b?α,則b∥β,命題正確;
對于C,平面α⊥平面β,過α與β交線上的點作交線的垂線時,該垂線不一定垂直于β,命題錯誤;
對于D,假設(shè)平面α內(nèi)存在直線垂直于平面β,則平面α垂直于平面β,這與已知平面α與平面β不垂直矛盾,所以假設(shè)不成立,命題正確.
故選:C.

點評 本題主要考查了空間中直線與平面之間的位置關(guān)系,以及平面與平面之間的位置關(guān)系,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}的前n項和為Sn,a1=1,an+a2n=n,a2n+1=an+1,則S49=325.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.“六一”兒童節(jié)這天,糖果店的售貨員忙極了,請你設(shè)計一個程序,幫助售貨員算賬,已知水果糖每千克10元,奶糖每千克15元,巧克力糖每千克25元,那么依次購買這三種糖果a,b,c千克,應(yīng)收取多少元錢?寫出一個算法,畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,數(shù)列{bn}為等差數(shù)列,b1=-1,bn>0(n≥2),b2Sn+an=2且3a2=2a3+a1
(1)求{an}、{bn}的通項公式;
(2)設(shè)cn=$\frac{1}{{a}_{n}}$,Tn=$\frac{b_1}{{{c_1}+1}}$+$\frac{b_2}{{{c_2}+1}}$+…+$\frac{b_n}{{{c_n}+1}}$,證明:Tn<$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,直線l:x-my-1=0(m∈R)過橢圓C的右焦點F,且交橢圓C于A,B兩點.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點A作垂直于y軸的直線l1,設(shè)直線l1與定直線l2:x=4交于點P,試探索當(dāng)m變化時,直線BP是否過定點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow a$=(cosx+$\sqrt{3}$sinx,1),$\overrightarrow b$=(y,2cosx),且$\overrightarrow a$∥$\overrightarrow b$.
(1)將y表示為x的函數(shù)f(x),并求f(x)的單調(diào)增區(qū)間.
(2)已知a,b,c分別為△ABC的三個內(nèi)角∠A,∠B,∠C對應(yīng)邊的邊長,若f($\frac{A}{2}$)=3且a=2,S△ABC=$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$\frac{2+i}{i}$=1+mi(i是虛數(shù)單位,m∈R),則m=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.g(x)=2lnx-x2-mx,x∈R,如果g(x)的圖象與x軸交于A(x1,0),B(x2,0)(x1<x2),AB中點為C(x0,0),求證g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某職業(yè)中學(xué)外貿(mào)專業(yè)高二(1)班有學(xué)生7人,高二(2)班有學(xué)生9人,高二(3)班有學(xué)生10人參加技能興趣選拔賽.
(1)如果選一人當(dāng)組長,那么有多少種選法?
(2)如果老師任組長,每班選一名副組長,那么有多少種不同的選法?
(3)如果推選兩名學(xué)生參加市技能大賽,要求這兩人來自不同的班級,那么有多少種不同的選法?

查看答案和解析>>

同步練習(xí)冊答案