15.函數(shù)y=x+$\frac{4}{x}$的值域?yàn)椋?∞,-4]∪[4,+∞).

分析 討論x>0,和x<0,然后利用基本不等式即可求出這兩種情況下的$x+\frac{1}{x}$的范圍,這兩個(gè)范圍求并集即可得出原函數(shù)的值域.

解答 解:x>0時(shí),$x+\frac{4}{x}≥4$;
x<0時(shí),$x+\frac{4}{x}=-[(-x)+\frac{4}{-x}]≤-4$;
∴原函數(shù)的值域?yàn)椋?∞,-4]∪[4,+∞).
故答案為:(-∞,-4]∪[4,+∞).

點(diǎn)評 考查函數(shù)值域的概念,基本不等式在求函數(shù)值域上的運(yùn)用,注意基本不等式成立的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),又f(x)在(0,+∞)上是減函數(shù),且f(x)<0,試判斷F(x)=$\frac{1}{f(x)}$在(-∞,0)上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知關(guān)于x的不等式m-|x-2|≥1,其解集為[0,4],求m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解不等式|x+7|-|3x-4|+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動點(diǎn)E,F(xiàn),且EF=$\frac{\sqrt{2}}{2}$,
給出下列五個(gè)命題:
①EF∥平面ABCD    
②AC⊥BE
③點(diǎn)A1到平面B1BDD1的距離為$\sqrt{2}$
④三棱錐A-BEF的體積為定值,⑤異面直線AE,BF所成的角為定值
其中真命題的序號是①,②,④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.我們把同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為M函數(shù):
(1)對任意的x∈[0,1],恒有f(x)≥0;
(2)當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.
①f(x)=x2②f(x)=x2+1③f(x)=lnx2④f(x)=2x-1
則以上四個(gè)函數(shù)中是M函數(shù)的有①③④(填寫編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.甲罐中有5個(gè)紅球,2個(gè)白球和3個(gè)黑球,乙罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球,先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機(jī)取出一球,以B表示由乙罐取出的球是紅球的事件.則下列結(jié)論中正確的是②④(寫出所有正確結(jié)論的編號).
①P(B)=$\frac{2}{5}$;
②P(B|A1)=$\frac{5}{11}$;
③事件B與事件A1相互獨(dú)立;
④A1,A2,A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因?yàn)樗cA1,A2,A3中究竟哪一個(gè)發(fā)生有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題中:①“x>|y|”是“x2>y2”的充要條件;
②已知隨機(jī)變量X服從正態(tài)分布N(3,σ2),P(X≤6)=0.72,則P(X≤0)=0.28;
③若n組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)的散點(diǎn)圖都在直線y=-2x+1上,則這n組數(shù)據(jù)的相關(guān)系數(shù)為r=-1;
④函數(shù)f(x)=${(\frac{1}{3})^x}$-$\sqrt{x}$的所有零點(diǎn)存在區(qū)間是$(\frac{1}{3},\frac{1}{2})$.其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)非空集合A滿足以下條件:若a∈A,則$\frac{1}{1-a}$∈A且1∉A.求證:若a∈A,則1-$\frac{1}{a}$∈A.

查看答案和解析>>

同步練習(xí)冊答案