分析 此題考察空間幾何體的線面問(wèn)題,體積問(wèn)題,和線線問(wèn)題.需要學(xué)生的耐心分析,靈活轉(zhuǎn)換,取特例等思想.
解答 解:①由正方體ABCD-A1B1C1D1的兩個(gè)底面平行,EF在其一面上,故EF與平面ABCD無(wú)公共點(diǎn),故有EF∥平面ABCD,真命題;
②由題意及圖形知,AC⊥面DD1B1B,故可得出AC⊥BE,真命題;
③A1到平面B1BDD1的距離為A1到B1D1的距離即$\frac{\sqrt{2}}{2}$.假命題;
④由幾何體的性質(zhì)及圖形知,三角形BEF的面積是定值,A點(diǎn)到面DD1B1B距離等于點(diǎn)A1到平面B1BDD1的距離是定值,故可得三棱錐A-BEF的體積為定值,真命題;
⑤取特例:由圖知,當(dāng)F與B1重合時(shí),令上底面頂點(diǎn)為O,則此時(shí)兩異面直線所成的角是∠A1AO,當(dāng)E與D1重合時(shí),此時(shí)點(diǎn)F與O重合,則兩異面直線所成的角是OBC1,此二角不相等,故異面直線AE、BF所成的角不為定值.假命題.
故答案為①,②,④
點(diǎn)評(píng) 次題考察知識(shí)點(diǎn)比較多,對(duì)圖形的考察比較抽象,學(xué)生應(yīng)結(jié)合圖形,根據(jù)概念耐心分析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
患病 | 未患病 | 總計(jì) | |
服用藥 | 10 | a1 | 55 |
未服用藥 | a2 | 30 | a4 |
總計(jì) | 30 | a3 | 105 |
p(x2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若p⇒q,則q是p的充分條件 | |
B. | “若a>b,則2a>2b”的否命題為“若a<b,則2a<2b” | |
C. | “?x∈R,x2+x≤1”的否定是“?x∈R,x2+x≥1” | |
D. | “x>0”是“x+$\frac{1}{x}$≥2”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com