3.在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為( 。
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

分析 畫出滿足條件的圖形,結(jié)合圖形分析,找出滿足條件的點集對應(yīng)的圖形面積,及圖形的總面積.

解答 解:如圖正方形的邊長為4:
圖中白色區(qū)域是以AB為直徑的半圓
當(dāng)P落在半圓內(nèi)時,∠APB>90°;
當(dāng)P落在半圓上時,∠APB=90°;
當(dāng)P落在半圓外時,∠APB<90°;
故使∠AMB>90°的概率P=$\frac{{S}_{半圓}}{{S}_{正方形}}$=$\frac{\frac{1}{2}×π×{2}^{2}}{16}$=$\frac{π}{8}$.
故選:A.

點評 幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對應(yīng)的“幾何度量”N(A),再求出總的基本事件對應(yīng)的“幾何度量”N,最后根據(jù)P=$\frac{N(A)}{N}$求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知O為△ABC的外心,AB=2a,AC=$\frac{2}{a}$,∠BAC=120°,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則3x+6y的最小值為$6+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,∠A=60°,∠A的內(nèi)角平分線AD將BC分成BD、DC兩段,若向量$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+λ\overrightarrow{AC}(λ∈{R})$,則∠B=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=|x+a|+|x-2|
①當(dāng)a=-3時,求不等式f(x)≥3的解集;
②f(x)≤|x-4|若的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱錐P-ABC中,PA⊥平面ABC,2AC=PC=2,AC⊥BC,D,E,F(xiàn)分別為AC,AB,AP的中點,M,N分別為線段PC,PB上的動點,且有MN∥BC,
(Ⅰ)求證:MN⊥平面PAC
(Ⅱ)探究:是否存在這樣的動點M,使得二面角E-MN-F為直二面角?若存在,求CM的長度,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)等差數(shù)列{an}滿足a1=1,an>0(n∈N*),其前n項和為Sn,若數(shù)列{$\sqrt{{S}_{n}}$}也為等差數(shù)列,則$\frac{{S}_{n+10}}{{{a}_{n}}^{2}}$的最大值是( 。
A.310B.212C.180D.121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足a1=0,an+1=an+$\frac{1}{n(n+1)}+1$
(1)證明數(shù)列{an+$\frac{1}{n}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{$\frac{{a}_{n}}{n}$}的前n項和為Sn,證明Sn$<\frac{{n}^{2}}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若不等式2|x|-1>a(x2-1)對滿足-1≤a≤1的所有a都成立,則x的取值范圍是-2<x<1-$\sqrt{3}$或$\sqrt{3}<x<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=${∫}_{0}^{\frac{π}{6}}$cosxdx,則曲線y=ax2在x=1處切線的斜率為(  )
A.$\frac{1}{2}$B.1C.2D.-1

查看答案和解析>>

同步練習(xí)冊答案