11.已知函數(shù)f(x)=|x+a|+|x-2|
①當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
②f(x)≤|x-4|若的解集包含[1,2],求a的取值范圍.

分析 ①不等式等價(jià)于$\left\{\begin{array}{l}{x≤2}\\{3-x+2-x≥3\\;}\end{array}\right.$,或$\left\{\begin{array}{l}{2<x<3}\\{3-x+x-2≥3}\end{array}\right.$,或$\left\{\begin{array}{l}{x≥3}\\{x-3+x-2≥3}\end{array}\right.$,求出每個(gè)不等式組的解集,再取并集即得所求.
②原命題等價(jià)于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范圍.

解答 解:(1)當(dāng)a=-3時(shí),f(x)≥3 即|x-3|+|x-2|≥3,即
$\left\{\begin{array}{l}{x≤2}\\{3-x+2-x≥3\\;}\end{array}\right.$,可得x≤1;
$\left\{\begin{array}{l}{2<x<3}\\{3-x+x-2≥3}\end{array}\right.$,可得x∈∅;
$\left\{\begin{array}{l}{x≥3}\\{x-3+x-2≥3}\end{array}\right.$,可得x≥4.
取并集可得不等式的解集為 {x|x≤1或x≥4}.
(2)原命題即f(x)≤|x-4|在[1,2]上恒成立,等價(jià)于|x+a|+2-x≤4-x在[1,2]上恒成立,
等價(jià)于|x+a|≤2,等價(jià)于-2≤x+a≤2,-2-x≤a≤2-x在[1,2]上恒成立.
故當(dāng) 1≤x≤2時(shí),-2-x的最大值為-2-1=-3,2-x的最小值為0,
故a的取值范圍為[-3,0].

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,關(guān)鍵是去掉絕對(duì)值,化為與之等價(jià)的不等式組來(lái)解,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知{an},{bn},{cn}都是各項(xiàng)不為零的數(shù)列,且滿足a1b1+a2b2+…+anbn=cnSn,n∈N*,其中Sn是數(shù)列{an}的前n項(xiàng)和,{cn}是公差為d(d≠0)的等差數(shù)列.
(1)若數(shù)列{an}是常數(shù)列,d=2,c2=3,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an=λn(λ是不為零的常數(shù)),求證:數(shù)列{bn}是等差數(shù)列;
(3)若a1=c1=d=k(k為常數(shù),k∈N*),bn=cn+k(n≥2,n∈N*),求證:對(duì)任意的n≥2,n∈N*,數(shù)列$\{\frac{b_n}{a_n}\}$單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x2-ax-a.
(Ⅰ)若存在實(shí)數(shù)x,使f(x)<0,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=|f(x)|,若任意實(shí)數(shù)a,存在x0∈[0,1]使不等式g(x0)≥k成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與圓(x-3)2+y2=9相交于A、B兩點(diǎn),若|AB|=2,則該雙曲線的離心率為( 。
A.8B.2$\sqrt{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC是邊長(zhǎng)為2的正三角形,點(diǎn)P是△ABC內(nèi)一點(diǎn),且$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=$\overrightarrow{0}$.則$\overrightarrow{PA}$•$\overrightarrow{PB}$等于( 。
A.-$\frac{2}{9}$B.-$\frac{1}{9}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列四個(gè)命題
①已知命題P:?x∈R,x2+x<0,則?P:?x∈R,x2+x<0;
②$y={x^2}-{({\frac{1}{2}})^x}$的零點(diǎn)所在的區(qū)間是(1,2);
③若實(shí)數(shù)x,y滿足xy=1,則x2+2y2的最小值為$2\sqrt{2}$;
④設(shè)a,b是兩條直線,α,β是兩個(gè)平面,則a?α,b⊥β,α∥β是a⊥b的充分條件;
其中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為( 。
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線m,l,平面α,β,且m⊥α,l?β,給出下列命題:
①若α∥β,則m⊥l;  ②若α⊥β,則m∥l;  ③若m⊥l,則α⊥β;④若m∥l,則α⊥β.  
其中正確的命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點(diǎn)A(2,0),B(0,4),且AC=BC,則△ABC的歐拉線的方程為(  )
A.x+2y+3=0B.2x+y+3=0C.x-2y+3=0D.2x-y+3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案