16.由曲線y=$\frac{1}{x}$(x>0),直線x=1,x=2及x軸所圍成的平面圖形的面積為( 。
A.ln2B.ln2-1C.1+ln2D.2ln2

分析 確定曲線交點(diǎn)的坐標(biāo),確定被積區(qū)間及被積函數(shù),利用定積分表示面積,即可得到結(jié)論.

解答 解:由A($\frac{1}{2}$,2)、B(1,1),
曲線y=$\frac{1}{x}$(x>0),直線x=1,x=2及x軸所圍成的平面圖形的面積,
S=${∫}_{1}^{2}\frac{1}{y}dy$=lny${丨}_{1}^{2}$=ln2,
故答案選:A.

點(diǎn)評 本題考查了定積分的幾何意義和定積分計(jì)算公式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.解關(guān)于x的不等式2ax2-(2a+1)x+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求值:(lg2)3+(lg5)3+lg2•lg125=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若-$\frac{π}{2}$<x<0,當(dāng)函數(shù)f(x)=$\frac{1+cos2x+1{8sin}^{2}x}{sin2x}$取最大值時(shí),tan2x的值為( 。
A.-2B.-3C.-$\frac{1}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.n∈N,A=($\sqrt{7}$+2)2n+1,B為A的小數(shù)部分,則AB的值應(yīng)是(  )
A.72n+1B.22n+1C.32n+1D.52n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.把函數(shù)f(x)=sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)g(x)的圖象,則函數(shù)g(x)=sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC頂點(diǎn)A(4,-1),B(-2,-3),C(3,4),求:AB邊的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l:(t+1)x-(t+2)y-t=0(t∈R),O為坐標(biāo)原點(diǎn).
(1)當(dāng)t=1時(shí),求過點(diǎn)O且與直線l平行的直線方程;
(2)設(shè)點(diǎn)C在直線l上,且|OC|的最小值為$\sqrt{5}$,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-$\frac{a}{2}{x}^{2}$+(a-1)x+lnx.
(Ⅰ)若a>-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>1,求證:(2a-1)f(x)<3ea-3

查看答案和解析>>

同步練習(xí)冊答案