由y2=4x與直線y=2x-4所圍成圖形的面積為
 
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先聯(lián)立方程,組成方程組,求得交點(diǎn)坐標(biāo),可得被積區(qū)間,再用定積分表示出曲線yy2=4x與直線y=2x-4所圍成的封閉圖形的面積,即可求得結(jié)論
解答: 解:聯(lián)立方程組
y2=4x
y=2x-4
,解得
x=1
y=-2
x=4
y=4

∴曲線y=x2與直線y=x圍成的封閉圖形的面積為S=
4
-2
1
2
y+2-
1
4
y2)dy=(
1
4
y2+2y-
1
12
y3
)|
 
4
-2
=9,
故答案為:9
點(diǎn)評(píng):本題考查利用定積分求面積,解題的關(guān)鍵是確定被積區(qū)間及被積函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查研究,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱
為A類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類同學(xué)),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該年級(jí)的學(xué)生中抽查100名同學(xué).
(Ⅰ)求抽取的100名同學(xué)中,有多少名A 類同學(xué)?
(Ⅱ)如果以身高達(dá)到170厘米作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生進(jìn)行統(tǒng)計(jì),得到2×2列聯(lián)表如下:
體育鍛煉與身高達(dá)標(biāo)2×2列聯(lián)表
身高達(dá)標(biāo)身高不達(dá)標(biāo)總計(jì)
積極參加體育鍛煉403575
不積極參加體育鍛煉101525
總計(jì)5050100
請(qǐng)問(wèn)是否有99%以上的把握認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系?.
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
參考數(shù)據(jù):
P(K2≥k)0.250.150.100.050.0250.0100.001
k1.3232.0722.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3+ax2-3x-1(a<0),且曲線y=f(x)斜率最小的切線與直線4x+y=6平行.求:
(Ⅰ)a的值;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+2x)2(1-x)5=a0+a1x+…+a7x7,則a0-a1+a2-a3+a4-a5+a6-a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式sin2x-(a+1)sinx+1≥0對(duì)一切x∈[0,
π
2
]恒成立,則a∈
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中a1=1,an+1=
an
2an+1
(n∈N+).則數(shù)列{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離;現(xiàn)已知曲線C:y=
x
+a到直線l:x-2y=0的距離等于
5
,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
4
+
y2
3
=1的右焦點(diǎn)F2的直線交橢圓于于M,N兩點(diǎn),令|F2M|=m,|F2N|=n,則
mn
m+n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(n,p),且Eξ=7,Dξ=6,則p等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案