下列命題:
①若p,q為兩個(gè)命題,則“p且q為真”是“p或q為真”的必要不充分條件.
②若p為:?x∈R,x2+2x≤0,則¬p為:?x∈R,x2+2x>0.
③命題“?x,x2-2x+3>0”的否命題是“?x,x2-2x+3<0”.
④命題“若¬p則q”的逆否命題是“若p,則¬q”.
其中正確結(jié)論的序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:①由“或命題”“且命題”的意義及其關(guān)系、充分必要條件即可判斷出;
②由非命題的定義即可判斷出;
③由非命題的意義即可得出;
④由逆否命題的意義即可得出.
解答: 解:①p,q為兩個(gè)命題,由“p且q為真”⇒“p或q為真”,反之不成立,因此“p且q為真”是“p或q為真”的充分不必要條件. 因此不正確.
②若p為:?x∈R,x2+2x≤0,由非命題的定義可得:¬p為:?x∈R,x2+2x>0,可知正確.
③命題“?x,x2-2x+3>0”的非命題是“?x,x2-2x+3≤0”,可知③不正確.
④命題“若¬p則q”的逆否命題是“若¬q,則p”,因此不正確.
綜上可知:只有①②正確.
故答案是:②.
點(diǎn)評(píng):本題考查了簡(jiǎn)易邏輯的有關(guān)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是等邊△ABC外接圓
BC
上任一點(diǎn),求證:PA2=AC2+PB•PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確命題的序號(hào)是
 

①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z};
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象與函數(shù)y=x的圖象有3個(gè)公共點(diǎn);
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-
1
2p
x2
(p>0)的焦點(diǎn)與雙曲線C2
x2
3
-y2=1的左焦點(diǎn)的連線交C1于第三象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則P=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.
④命題“?x0∈R,ex0≤0”是真命題.其中正確的命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①四邊形是平面圖形;
②有三個(gè)共同點(diǎn)的兩個(gè)平面重合;
③兩兩相交的三條直線必在同一平面內(nèi);
④三角形必是平面圖形.
其中正確的命題是
 
(填寫所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①已知函數(shù)f(x)為連續(xù)可導(dǎo)函數(shù),若f(x)為奇函數(shù),則f(x)的導(dǎo)函數(shù)f′(x)為偶函數(shù);
②若函數(shù)f(x)=x2,則f′(2x)=[f(2x)]′;
③若函數(shù)g(x)=(x-1)(x-2)…(x-5)(x-6),則g′(6)=120;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值”的充要條件.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c且f(1+x)=f(-x),則下列不等式中成立的是( 。
A、f(-2)<f(0)<f(2)
B、f(0)<f(-2)<f(2)
C、f(2)<f(0)<f(-2)
D、f(0)<f(2)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=k(x+2)與雙曲線
x2
m
-
y2
8
=1,有如下信息:聯(lián)立方程組:
y=k(x+2)
x2
m
-
y2
8
=1
消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當(dāng)A=0時(shí),該方程恒有一解;
(2)當(dāng)A≠0時(shí),△=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( 。
A、(1,
3
]
B、[
3
,+∞)
C、(1,2]
D、[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案