分析 設(shè)點(diǎn)為(-1+2$\sqrt{2}$cosα,-2+2$\sqrt{2}$sinα),點(diǎn)到直線的距離為d=$\frac{|-2+2\sqrt{2}cosα+2\sqrt{2}sinα|}{\sqrt{2}}$=$\sqrt{2}$,從而得到結(jié)論.
解答 解:圓x2+y2+2x+4y-3=0,即(x+1)2+(y+2)2=8,表示以C(-1,-2)為圓心,以2$\sqrt{2}$為半徑的圓.
設(shè)點(diǎn)為(-1+2$\sqrt{2}$cosα,-2+2$\sqrt{2}$sinα)
點(diǎn)到直線的距離為d=$\frac{|-2+2\sqrt{2}cosα+2\sqrt{2}sinα|}{\sqrt{2}}$=$\sqrt{2}$,
∴sin(α+$\frac{π}{4}$)=-1或0,
∴α+$\frac{π}{4}$=2kπ+$\frac{3}{2}$π或α+$\frac{π}{4}$=kπ(k∈Z),
∴α=2kπ+$\frac{5}{4}$π或=kπ-$\frac{π}{4}$(k∈Z),
∴圓x2+y2+2x+4y-3=0上到直線l:x+y+1=0的距離為$\sqrt{2}$的點(diǎn)的坐標(biāo)(-3,-4)或(1,-4)或(-3,0).
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1006+22017 | B. | 1010+22016 | C. | 1006+22016 | D. | 2014+22017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=log2x | B. | y=x-$\frac{1}{x}$ | C. | y=-x3 | D. | y=tanx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (13,49) | B. | [2,2+$\sqrt{13}$] | C. | [2,13] | D. | [4,22+6$\sqrt{13}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{5}$ | B. | $\frac{2\sqrt{2}}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com