3.已知函數(shù)f(x)=2+ax,若f(f(0))=4a.
(1)求實數(shù)a的值;
(2)計算f(3)-f(-1)的值.

分析 (1)由已知可得:f(0)=2,f(f(0))=f(2),代入解得a.
(2)由(1)可得:f(x)=2+x.代入即可得出.

解答 解:(1)∵f(x)=2+ax,
∴f(0)=2,
f(f(0))=f(2)=2+2a=4a,
解得a=1.
(2)由(1)可得:f(x)=2+x.
∴f(3)-f(-1)=(2+3)-(2-1)=4.

點評 本題考查了函數(shù)的解析式、求值,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,k),若$\overrightarrow{a}$與$\overrightarrow$共線,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.5B.5$\sqrt{2}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.多面體ABCDFE中,底面四邊形ABCD為矩形,EF∥AD,AE=FD,F(xiàn)G=GD,AD=2AB=2EF=2,且四邊形EADF的面積為$\frac{3\sqrt{3}}{4}$.
(1)判斷直線BF與平面ACG的關系,并說明理由;
(2)若平面EADF⊥平面ABCD,求平面FBC與平面ACG形成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列判斷中錯誤的是( 。
A.若ξ~B(4,0.25),則Dξ=1
B.“am2<bm2”是“a<b”的充分不必要條件
C.若p、q均為假命題,則“p且q”為假命題
D.命題“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x02-x0-1>0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在Rt△ABC中,A=$\frac{π}{2}$,AB=1,AC=2,以AB方向、AC方向為x軸、y軸建立平面直角坐標系,點P(x,y)在△ABC內部及邊界上運動,記z=x+y,則z的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若方程|x2-4|x|-5|=m有6個互不相等的實根,則m的取值范圍為(5,9).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.將方程組寫成矩陣形式:
$\left\{\begin{array}{l}{2x+y-z=0}\\{7x+10y=330}\\{5y+8z=220}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某統(tǒng)計部門隨機抽查了3月1日這一天新世紀百貨童裝部100名顧客的購買情況,得到如圖數(shù)據(jù)統(tǒng)計表,已知購買金額在2000元以上(不含2000元)的頻率為0.4.
購買金額頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計1001.00
(1)確定x,y,p,q的值;
(2)為進一步了解童裝部的購買情況是否與顧客性別有關,對這100名顧客調查顯示:購物金額在2000元以上的顧客中女顧客有35人,購物金額在2000元以下(含2000元)的顧客中男顧客有20人;
①請將列聯(lián)表補充完整:
女顧客男顧客合計
購物金額在2000元以上35
購物金額在2000元以下20
合計100
②并據(jù)此列聯(lián)表,判斷是否有97.5%的把握認為童裝部的購買情況與顧客性別有關?
參考數(shù)據(jù):
P(K2≥k)0.010.050.0250.01
k2.7063.8415.0246.635
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如表的列聯(lián)表.
 優(yōu)秀非優(yōu)秀總計
甲班10  
乙班 30 
合計  100
已知在全部100人中抽到隨機抽取1人為優(yōu)秀的概率為$\frac{3}{10}$
(1)請完成如表的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),有多大的把握認為“成績與班級有關系“?
(3)按分層抽樣的方法,從優(yōu)秀學生中抽出6名學生組成一個樣本,再從樣本中抽出2名學生,記甲班被抽到的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.
參考公式和數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
下面的臨界值表供參考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習冊答案