14.已知a∈(0,$\frac{π}{2}$),且2sin2α-sinα•cosα-3cos2α=0,則$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$=(  )
A.$\frac{\sqrt{26}}{4}$B.$\frac{\sqrt{26}}{8}$C.$\frac{\sqrt{13}}{4}$D.$\frac{\sqrt{13}}{8}$

分析 利用已知條件求出tanα的值,然后求解所求表達式的值.

解答 解:α∈(0,$\frac{π}{2}$),且2sin2α-sinαcosα-3cos2α=0,
所以2tan2α-tanα-3=0,解得tanα=$\frac{3}{2}$,tanα=-$\frac{1}{2}$(舍去)
cosα=$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=$\sqrt{\frac{4}{13}}$,
∴$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$=$\frac{\frac{\sqrt{2}}{2}(sinα+cosα)}{2sinαcosα+2co{s}^{2}α}$=$\frac{\sqrt{2}}{4cosα}$=$\frac{\sqrt{2}}{4×\frac{2}{\sqrt{13}}}$=$\frac{\sqrt{26}}{8}$.
故選:B.

點評 本題考查三角函數(shù)的化簡求值,同角三角函數(shù)的基本關(guān)系式的應用,考查計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若(3+x)n展開式的二次項系數(shù)的和為256,則n的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設{an}為等比數(shù)列,a1=1,a2=3.
(Ⅰ)求最小的自然數(shù)n,使an≥2014;
(Ⅱ)求和:${T_{2n}}=\frac{1}{a_1}-\frac{2}{a_2}+\frac{3}{a_3}-…-\frac{2n}{{{a_{2n}}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若A⊆B,求a的取值范圍;
(2)若A∩B=∅,求a的取值范圍;
(3)若A∩B=(3,4),求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}+bx-1}{x}$,且f(1)=0.
(1)求b的值,判斷f(x)在(0,+∞)上的單調(diào)性并給予證明;
(2)對任意x∈[1,+∞),不等式f(mx)+mf(x)<0恒成立,求實數(shù)m的取值范圍;
(3)若有常數(shù)M,使得對任意的x1∈(a,b),存在唯一的x2∈(a,b)滿足$\frac{f({x}_{1})+f({x}_{2})}{2}$=M,則稱M為函數(shù)f(x)在(a,b)上的“均值”,試求函數(shù)f(x)在(1,3)上的“均值”并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.分解因式:a2+9b2-6ab-25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列函數(shù)中,值域為[-2,2]的是(  )
A.f(x)=2x-1B.f(x)=log0.5(x+11)C.f(x)=$\frac{4x}{{x}^{2}+1}$D.f(x)=x2(4-x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知定義在R上的奇函數(shù)f(x)=$\frac{ax+b}{{x}^{2}+c}$的圖象如圖所示,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=x2+2x+1-sin$\frac{a-b}{3}$π
(Ⅰ)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求函數(shù)f(x)有零點的概率
(Ⅱ)若a是從區(qū)間[0,3]中任取的一個數(shù),b是從區(qū)間[0,2]中任取的一個數(shù),求函數(shù)f(x)有零點的概率.

查看答案和解析>>

同步練習冊答案