已知拋物線y=ax2-2x+1與x軸沒(méi)有交點(diǎn),那么該拋物線的頂點(diǎn)所在的象限是( 。
A、第四象限B、第三象限
C、第二象限D、第一象限
考點(diǎn):二次函數(shù)的性質(zhì)
專題:
分析:根據(jù)拋物線y=ax2-2x+1與x軸沒(méi)有交點(diǎn),得出△=4-4a<0,a>1,再根據(jù)b=-2,得出拋物線的對(duì)稱軸在y軸的右側(cè),即可求出答案.
解答: 解:∵拋物線y=ax2-2x+1與x軸沒(méi)有交點(diǎn),
∴△=4-4a<0,
解得:a>1,
∴拋物線的開(kāi)口向上,
又∵b=-2,
∴-
b
2a
>0,
∴拋物線的對(duì)稱軸在y軸的右側(cè),
∴拋物線的頂點(diǎn)在第一象限;
故選:D.
點(diǎn)評(píng):此題考查了二次函數(shù)的圖象與x軸交點(diǎn),關(guān)鍵是根據(jù)二次函數(shù)的圖象與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的解之間的聯(lián)系求出a的值,這些性質(zhì)和規(guī)律要求掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)函數(shù):①y=3-x;②y=
1
x2+1
;③y=x2+2x-10;④y=-
2
x
.其中值域?yàn)镽的函數(shù)有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=|x|-2的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).
(1)若當(dāng)x≤-1時(shí),不等式f(x)+5a<0恒成立,求a的取值范圍;
(2)當(dāng)x∈[0,2]時(shí),f(x)的值域是[-6,-
3
2
],求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、若p∧q為假命題,則p,q均為假命題
B、設(shè)實(shí)數(shù)a,b,c滿足a+b+c=0,則a,b,c中至少有一個(gè)不小于0
C、若
a
b
=
a
c
,則
b
=
c
D、函數(shù)y=log2(x2-2x)的單調(diào)增區(qū)間是[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:ax+by+1=0,圓M:x2+y2-2ax-2by=0,則直線l和圓M在同一坐標(biāo)系中的圖形可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
sin6x
2x-2-x
的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x),g(x)(g(x)≠0)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)<f(x)g′(x),f(-3)=0,則不等式
f(x)
g(x)
<0的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案