16.已知函數(shù)$f(x)=\root{3}{x}-{(\frac{1}{2})^x}$,那么在下列區(qū)間中含有函數(shù)f(x)零點的是( 。
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

分析 可判斷函數(shù)$f(x)=\root{3}{x}-{(\frac{1}{2})^x}$在其定義域上連續(xù),再由零點的判定定理判斷即可.

解答 解:函數(shù)$f(x)=\root{3}{x}-{(\frac{1}{2})^x}$在其定義域上連續(xù),
f($\frac{1}{2}$)=$\root{3}{\frac{1}{2}}$-$(\frac{1}{2})^{\frac{1}{2}}$=$(\frac{1}{2})^{\frac{1}{3}}$-$(\frac{1}{2})^{\frac{1}{2}}$<0,
f($\frac{2}{3}$)=$(\frac{2}{3})^{\frac{1}{3}}$-$(\frac{1}{2})^{\frac{2}{3}}$=$(\frac{2}{3})^{\frac{1}{3}}$-$(\frac{1}{4})^{\frac{1}{3}}$>0,
故f($\frac{1}{2}$)f($\frac{2}{3}$)<0,
故選C.

點評 本題考查了函數(shù)的零點的判定定理及指數(shù)函數(shù)與冪函數(shù)的單調(diào)性的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x>0時,$f(x)={x^2}+\frac{2}{x}$,則x<0時,f(x)=x2-$\frac{2}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{bx}{a{x}^{2}+c}$,f′(0)=9,其中a>0,b,c∈R,且b+c=10.
(1)求b,c的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若0<a≤1,求證:當(dāng)x>1時,(x3+1)f(x)>9+lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知圓C:(x-3)2+(y-$\sqrt{7}$)2=1和兩點A(-m,0),B(m,0)(m>0),若圓C上存在點P,使得∠APB=90°,則m的最大值為(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=log3$\frac{x-1}{x+1}$,g(x)=-2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)當(dāng)a=-1時,證明h(x)是奇函數(shù);
(Ⅱ)若關(guān)于x的方程f(x)=log3g(x)有兩個不等實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=sin(2x+ϕ)-\sqrt{3}cos(2x+ϕ)(0<ϕ<π)$是R上的偶函數(shù),則ϕ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xoy中,不共線的四點A,B,C,D滿足$\overrightarrow{AB}=\overrightarrow{DC}$,且$\overrightarrow{AC}=(1,2)$,$\overrightarrow{DB}=(3,4)$,求:
(1)$\overrightarrow{AB}\;,\;\overrightarrow{AD}$的坐標(biāo);
(2)四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.請用十字相乘法解一元二次方程:2x2+3=7x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知2sinθ-cosθ=1,則$\frac{2cosθ}{sinθ-cosθ+1}$=±1.

查看答案和解析>>

同步練習(xí)冊答案