19.若x∈R,n∈N*,規(guī)定:$H_x^n=x(x+1)(x+2)…(x+n-1)$,例如:$H_{-4}^4=(-4)•(-3)•(-2)•(-1)=24$,則函數(shù)$f(x)=x•H_{x-1}^3$的圖象(  )
A.關(guān)于原點(diǎn)對(duì)稱B.關(guān)于直線y=x對(duì)稱C.關(guān)于x軸對(duì)稱D.關(guān)于y軸對(duì)稱

分析 利用新定義,化簡函數(shù),再利用函數(shù)奇偶性的判斷方法,即可求得結(jié)論.

解答 解:∵Hxn=x(x+1)(x+2)…(x+n-1),
∴f(x)=xHx-13=x(x-1)x(x+1)=x2(x2-1)
則f(-x)=(-x)2[(-x)2-1]=x2(x2-1)=f(x)
∴函數(shù)f(x)是偶函數(shù),
∴函數(shù)圖象關(guān)于y軸對(duì)稱,
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的判斷,其中根據(jù)已知求出函數(shù)的解析式,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+2{a}_{n}}$(n∈N+).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an•an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)Sn={1,2,…,n},若X是Sn的子集,把X中的所有數(shù)的和稱為X的“容量”(規(guī)定φ的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.
(1)求證:Sn的奇子集與偶子集個(gè)數(shù)相等;
(2)求證:當(dāng)n≥3時(shí),Sn的所有奇子集的容量之和等于所有偶子集的容量之和;
(3)求n≥3時(shí)Sn的所有奇子集的容量和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解下列不等式:
(1)-2x2+x<-3
(2)x2-x+$\frac{1}{4}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知下列命題
①b2=ac,則a,b,c成等比數(shù)列;
②若{an}為等差數(shù)列,且常數(shù)c>0,則數(shù)列{can}為等比數(shù)列;
③若{an}為等比數(shù)列,且常數(shù)c>0,則數(shù)列{can}為等比數(shù)列;
④常數(shù)列既為等差數(shù)列,又是等比數(shù)列.
其中,真命題的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)計(jì)算:${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}-{(π-1)^0}+{100^{\frac{1}{2}lg9+lg2}}$;
(2)已知log23=a,log37=b,試用a,b表示log1456.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=log4(2x+3-x2)值域?yàn)椋?∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.log89•log32=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式0.3${\;}^{{x}^{2}+x+1}$>0.3${\;}^{-2{x}^{2}+5x}$的解集為($\frac{1}{3}$,1).

查看答案和解析>>

同步練習(xí)冊答案