【題目】某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市10萬名男生的身高服從正態(tài)分布.現(xiàn)從某學校高中男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160cm190cm之間,將身高的測量結果按如下方式分成5組:第1[160,166),第2[166172),...,第5[184,190]下表是按上述分組方法得到的頻率分布表:

分組

[160166)

[166,172)

[172,178)

[178,184)

[184,190]

人數(shù)

3

10

24

10

3

50個數(shù)據(jù)的平均數(shù)和方差分別比10萬個數(shù)據(jù)的平均數(shù)和方差多16.68,且這50個數(shù)據(jù)的方差為.(同組中的身高數(shù)據(jù)用該組區(qū)間的中點值作代表)

(1),;

(2)給出正態(tài)分布的數(shù)據(jù):,.

(i)若從這10萬名學生中隨機抽取1名,求該學生身高在(169,179)的概率;

(ii)若從這10萬名學生中隨機抽取1萬名,記為這1萬名學生中身高在(169184)的人數(shù),求的數(shù)學期望.

【答案】(1) =174;; (2) (i) 0.6826 ;(ii)8185

【解析】

1)由每組的中間值乘以該組的人數(shù),再求和,最后除以總人數(shù),即可求出平均值,根據(jù)題意即可得到,再由,以及題中條件,即可得出;

(2)(i)先由題意得(169179)=(,),根據(jù)題中所給數(shù)據(jù),即可求出對應概率;

(ii)由題意可知(169184)=(,),,先求出一名學生身高在(169,184)的概率,由題意可知服從二項分布,再由二項分布的期望,即可求出結果.

解:(1)根據(jù)頻率分布表中的數(shù)據(jù)可以得出這50個數(shù)據(jù)的平均數(shù)為

所以

=31.68,

所以.

(2) (i)由題意可知(169,179)=(,)

所以該學生身高在(169,179)的概率為p=0.6826

(ii)由題意可知(169184)=(,)

所以一名學生身高在(169,184)的概率為

根據(jù)題意

所以的數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有大小均勻的6個小球,其中有紅色球4個,編號分別為1,23,4;白色球2個,編號分別為4,5,從盒子中任取3個小球(假設取到任何個小球的可能性相同).

1)求取出的3個小球中,含有編號為4的小球的概率;

2)在取出的3個小球中,小球編號的最大值設為,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)當時,證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)的圖像關于直線對稱,且當,,過點作曲線的兩條切線,若這兩條切線互相垂直,則該函數(shù)的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,求函數(shù)的單調區(qū)間;

2)設函數(shù),若,且上恒成立,求的取值范圍;

3)設函數(shù),若,且上存在零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.

(Ⅰ)求橢圓的方程:

(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將三棱錐拼接得到如圖所示的多面體,其中,,,分別為,的中點,.

1)當點在直線上時,證明:平面;

2)若均為面積為的等邊三角形,求該多面體體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,己知拋物線,直線交拋物線于兩點,是拋物線外一點,連接分別交地物線于點,且.

1)若,求點的軌跡方程.

2)若,且平行x軸,求面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知焦點在軸上的拋物線過點,橢圓的兩個焦點分別為,其中的焦點重合,過點的長軸垂直的直線交,兩點,且,曲線是以坐標原點為圓心,以為半徑的圓.

(1)求的標準方程;

(2)若動直線相切,且與交于,兩點,求的面積的取值范圍.

查看答案和解析>>

同步練習冊答案