【題目】在四邊形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣ ,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的長;
(Ⅱ)求BC的長.
【答案】解:(Ⅰ)△ACD中,由余弦定理可得:AC2= = ,解得AC= . ∴cos∠DAC= = = .
(Ⅱ)設∠DAC=α=∠DCA.
由(Ⅰ)可得:cosα= ,sinα= .
∴sin∠BAC=sin(120°﹣α)= × + = .
∴sinB=sin(∠BAC+∠BCA)=sin(180°﹣2α)=sin2α=2× × = .
在△BAC中,由正弦定理可得: = .
∴BC= =3
【解析】(1)△ACD中,由余弦定理可得:AC2= = ,解得AC.可得cos∠DAC= .(2)設∠DAC=α=∠DCA.由(1)可得:cosα= ,sinα= .可得sin∠BAC=sin(120°﹣α).sinB=sin(∠BAC+∠BCA)=sin(180°﹣2α)=sin2α.在△BAC中,由正弦定理可得: = .即可得出.
【考點精析】通過靈活運用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某大型水上樂園內有一塊矩形場地米, 米,以為直徑的半圓和半圓(半圓在矩形內部)為兩個半圓形水上主題樂園, 都建有圍墻,游客只能從線段處進出該主題樂園.為了進一步提高經(jīng)濟效益,水上樂園管理部門決定沿著修建不銹鋼護欄,沿著線段修建該主題樂園大門并設置檢票口,其中分別為上的動點, ,且線段與線段在圓心和連線的同側.已知弧線部分的修建費用為元/米,直線部門的平均修建費用為元/米.
(1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?
(2)試確定點的位置,使得修建費用最低.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】參與舒城中學數(shù)學選修課的同學對某公司的一種產(chǎn)品銷量與價格進行了統(tǒng)計,得到如下數(shù)據(jù)和散點圖.
定價x(元/千克) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(千克) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=2 ln y | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
參考數(shù)據(jù):
,
.
(1)根據(jù)散點圖判斷y與x,z與x哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結果及數(shù)據(jù),建立y關于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)當定價為150元/千克時,試估計年銷量.
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線x+的斜率和截距的最
小二乘估計分別為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對任意的實數(shù)x恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ea(x﹣1)﹣ax2 , a為不等于零的常數(shù).
(Ⅰ)當a<0時,求函數(shù)f′(x)的零點個數(shù);
(Ⅱ)若對任意x1 , x2 , 當x1<x2時,f(x2)﹣f(x1)>a( ﹣2x1)(x2﹣x1)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點為,,離心率.
(1)求此橢圓的方程;
(2)設直線:,若與此橢圓相交于,兩點,且等于橢圓的短軸長,求的值;
(3)以此橢圓的上頂點為直角頂點作橢圓的內接等腰直角三角形,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某經(jīng)銷商計劃銷售一款新型的空氣凈化器,經(jīng)市場調研發(fā)現(xiàn)以下規(guī)律:當每臺凈化器的利潤為 x (單位:元, x 0 )時,銷售量 q(x) (單位:百臺)與 x 的關系滿足:若 x 不超過 20 , 則 ;若 x 大于或等于180 ,則銷售量為零;當 20 ≤ x ≤180 時,( a , b 為實常數(shù)).
(Ⅰ)求函數(shù) q(x) 的表達式;
(Ⅱ)當 x 為多少時,總利潤(單位:元)取得最大值,并求出該最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學期望.
(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com