11.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$均為單位向量且?jiàn)A角為120°,則($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=-$\frac{3}{2}$.

分析 根據(jù)平面向量的乘法運(yùn)算展開(kāi)解答即可.

解答 解:∵向量$\overrightarrow{a}$、$\overrightarrow$均為單位向量且?jiàn)A角為120,
∴|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{2}$,
∴($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=|$\overrightarrow{a}$|2-2|$\overrightarrow$|2+$\overrightarrow{a}$•$\overrightarrow$=1-2-$\frac{1}{2}$=-$\frac{3}{2}$,
故答案為:-$\frac{3}{2}$

點(diǎn)評(píng) 本題考查了平面向量的運(yùn)算;屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知定義在R上的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件
(1)f(x)+f(2-x)=0,
(2)f(x)=(-2-x)
(3)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,0]}\\{1-x,x∈(0,1]}\end{array}\right.$
則函數(shù)f(x)與函數(shù)g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$的圖象在區(qū)間[-3,3]上公共點(diǎn)個(gè)數(shù)為6個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知不等式ax2+3x-2<0的解集為{x|x<1或x>b}.
(Ⅰ)求a,b的值;
(Ⅱ)解不等式ax2+(b-ac)x-bc>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知命題p:?x∈[1,2],x2-(k+1)x+1≤0,命題q:方程$\frac{x^2}{9-2k}+\frac{y^2}{k}=1$表示焦點(diǎn)在x軸上的橢圓.
(1)若p是真命題,求實(shí)數(shù)k的取值范圍;
(2)若p且q為假命題,p或q為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,CA=CB=CC1=2,∠ACB=90°,D,E分別是線段BC,AA1的中點(diǎn).
(1)求證:DE∥平面A1C1B;
(2)求直線DE與平面ABB1A1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.師大附中高一研究性學(xué)習(xí)小組,在某一高速公路服務(wù)區(qū),從小型汽車中按進(jìn)服務(wù)區(qū)的先后,以每間隔10輛就抽取一輛的抽樣方法抽取20名駕駛員進(jìn)行詢問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]統(tǒng)計(jì)后得到如圖的頻率分布直方圖.
(1)此研究性學(xué)習(xí)小組在采集中,用到的是什么抽樣方法?并求這20輛小型汽車車速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從車速在[80,90)的車輛中做任意抽取3輛,求車速在[80,85)和[85,90)內(nèi)都有車輛的概率;
(3)若從車速在[90,100)的車輛中任意抽取3輛,求車速在[90,95)的車輛數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x3+ax2+bx+c在x=-2與x=1時(shí)都取得極值
(Ⅰ) 求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若對(duì)x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.點(diǎn)P(1,0)到曲線$\left\{{\begin{array}{l}{x={t^2}}\\{y=2t}\end{array}}\right.$(其中參數(shù)t∈R)上的點(diǎn)的最短距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.一幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是1(cm)3

查看答案和解析>>

同步練習(xí)冊(cè)答案