【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在中秋節(jié)期間的月餅購買量單位:進行了問卷調(diào)查,得到如下頻率分布直方圖:

求頻率分布直方圖中a的值;

以頻率作為概率,試求消費者月餅購買量在的概率;

已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費者的人均月餅購買量估計該超市應(yīng)準備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表?

【答案】(1);(2)0.62;(3)12.08噸

【解析】

(1)由頻率分布直方圖列出方程能求出a

(2)由頻率分布直方圖先求出滿足題意的頻率,即得概率.

(3)由頻率分布直方圖先求出人均月餅購買量,由此能求出該超市應(yīng)準備12.08噸月餅恰好能滿足市場需求.

,解得

消費者月餅購買量在的頻率為:

,

費者月餅購買量在的概率為

由頻率分布直方圖得人均月餅購買量為:

,

萬克噸,

∴該超市應(yīng)準備噸月餅恰好能滿足市場需求.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與圓錐曲線C相交于A,B兩點,與軸、軸分別交于D、E兩點,且滿足.

(1)已知直線的方程為,且A的橫坐標小于B的橫坐標,拋物線C的方程為,求的值;

(2)已知雙曲線,求點D的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對某課題進行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見下表(單位:人)

I) 求x,y ;

II) 若從高校B、C抽取的人中選2人作專題發(fā)言,求這二人都來自高校C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論

ACBD;

ACD是等邊三角形;

AB與平面BCD成60°的角;

AB與CD所成的角是60°.

其中正確結(jié)論的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系xOy的坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程是,曲線C2的參數(shù)方程是(θ為參數(shù))

(1)寫出曲線C1,C2的普通方程;

(2)設(shè)曲線C1y軸相交于A,B兩點,點P為曲線C2上任一點,求|PA|2|PB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是雙曲線的右支上一點,分別為雙曲線的左右焦點,的內(nèi)切圓的圓心橫坐標為( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,其中是自然對數(shù)的底數(shù),.

(1)當時,證明:;

(2)是否存在實數(shù),使的最小值為3,如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創(chuàng)建知識的網(wǎng)絡(luò)問卷調(diào)查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如下表所示:

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;

(2)在(1)的條件下,文明辦為此次參加問卷調(diào)查的市民制定如下獎勵方案:

(i)得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

(ii)每次獲贈的隨機話費和對應(yīng)的概率為:

獲贈的隨機話費(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列及數(shù)學(xué)期望.

附:①

②若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年世界服裝市場是富有經(jīng)濟活力的一年,某國有企業(yè)為了使2019年服裝效益更上一層樓,決定進一步深化企業(yè)改革、制定好的政策,為此,該企業(yè)對某品牌服裝2018年1月份~5月份的銷售量(萬件)與利潤(萬元)作統(tǒng)計數(shù)據(jù)如下表:

(1)從這個月的利潤(單位:萬元)中任選個月,求此個月利潤均大于萬元且小于萬元的概率;

(2)已知銷售量(萬件)與利潤(萬元)大致滿足線性相關(guān)關(guān)系,請根據(jù)前個月的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的利潤的估計數(shù)據(jù)與真實數(shù)據(jù)的誤差不超過萬元,則認為得到的利潤的估計數(shù)據(jù)是理想的.請用表格中第個月的數(shù)據(jù)檢驗由(2)中回歸方程所得的第個月的利潤的估計數(shù)據(jù)是否理想.

注:

查看答案和解析>>

同步練習冊答案