已知實數(shù)abc滿足a+2b+c=1,a2+b2+c2=1,求證:-
2
3
≤c≤1.
考點:二維形式的柯西不等式
專題:選作題,不等式
分析:對于“積和結構”或“平方和結構”,通常構造利用柯西不等式求解即可
解答: 證明:根據(jù)條件可得:a+2b=1-c,a2+b2=1-c2,
根據(jù)柯西不等式得:(a+2b)2≤(a2+b2)(12+22),
∴(1-c)2≤5(1-c2),
解之得:-
2
3
≤c≤1.
點評:柯西不等式的特點:一邊是平方和的積,而另一邊為積的和的平方,因此,當欲證不等式的一邊視為“積和結構”或“平方和結構”,再結合不等式另一邊的結構特點去嘗試構造.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
log0.5(x-4)
定義域為(  )
A、[5,+∞)
B、(-∞,5]
C、(4,5]
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知ABCD是邊長為2的正方形,EA⊥平面ABCD,F(xiàn)C⊥平面ABCD,設EA=1,F(xiàn)C=2;
(1)證明:平面EAB⊥平面EAD;
(2)求四面體BDEF的體積;
(3)求點B到平面DEF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2ax+4.
(1)若函數(shù)f(x)滿足f(1+x)=f(1-x),求函數(shù)在x∈[-2,2]的值域;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+1的圖象上方,試確定實數(shù)a的范圍.
(3)若方程f(x)=0在[-1,1]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某大學生創(chuàng)業(yè)團隊淘寶項目每月要投入一定的營銷費用,已知每投入營銷費用k萬元,每月銷售收入大概增加-k2+5k+1萬元.(利潤=增加的銷售收入-投入)
(Ⅰ)若該創(chuàng)業(yè)團隊將本月的營銷費用控制在3萬元之內(nèi),則應投入多少營銷費用才能使該項目本月利潤最大.
(Ⅱ)現(xiàn)該創(chuàng)業(yè)團隊本月準備投入3萬元,分別用于營銷費用和產(chǎn)品研發(fā)升級,經(jīng)預測,產(chǎn)品研發(fā)升級費用每投入x萬元增加的銷售收入大概為-
1
3
x3+x2+3x萬元,如何分配該筆資金,使該項目本月利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0,令ω=2,將函數(shù)y=f(x)的圖象向左平移個
π
6
單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(z)在區(qū)間[m,m+10π](-
π
4
<m<
12
)上有20個零點:a1,a2,a3,…,a20,求a1+a2+a3+…+a20的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

作為家長都希望自己的孩子能升上比較理想的高中,于是就催生了“名校熱”,這樣擇校的結果就導致了學生在路上耽誤的時間增加了.若某生由于種種原因,每天只能 6:15騎車從家出發(fā)到學校,途經(jīng)5個路口,這5個路口將家到學校分成了6個路段,每個路段的騎車時間是10分鐘(通過路口的時間忽略不計),假定他在每個路口遇見紅燈的概率均為
1
3
,且該生只在遇到紅燈或到達學校才停車.對每個路口遇見紅燈情況統(tǒng)計如下:
紅燈 1 2 3 4 5
等待時間(秒) 60 60 90 30 90
(1)設學校規(guī)定7:20后(含7:20)到校即為遲到,求這名學生遲到的概率;
(2)設X表示該學生上學途中遇到的紅燈數(shù),求P(X≥2)的值;
(3)設Y表示該學生第一次停車時已經(jīng)通過路口數(shù),求隨機變量Y的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A為C上一點,已知以F為圓心,F(xiàn)A為半徑的圓F與l切于B點,且△ABF的面積為2.
(Ⅰ)求p的值及圓F的方程;
(Ⅱ)過B作直線與拋物線C交于M(x1,y1),N(x2,y2)兩點,是否存在常數(shù)m,使
|FM|
|FN|
=
y1-m
m-y2
恒成立?若存在,求常數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若3+2i(i為虛數(shù)單位)是關于x的方程x2+px+q=0(p,q∈R)的一個根,則q的值為
 

查看答案和解析>>

同步練習冊答案