10.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位),且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=4sinθ.
(1)求圓C的圓心到直線l的距離;
(2)設(shè)圓C與直線l交于點(diǎn)A、B兩點(diǎn),P($\sqrt{3}$,2),求|PA|•|PB|的值.

分析 (1)直線l的參數(shù)方程為,$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.圓C的方程為ρ=4sinθ,即ρ2=4ρsinθ.可得直角坐標(biāo)方程,配方可得圓心C.利用點(diǎn)到直線的距離公式可得圓C的圓心到直線l的距離.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入圓C方程可得:t2+$\sqrt{3}$t-1=0,利用|PA|•|PB|=|t1t2|及其根與系數(shù)的關(guān)系即可得出.

解答 解:(1)直線l的參數(shù)方程為,$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程:$\sqrt{3}$x-y-1=0.
圓C的方程為ρ=4sinθ,即ρ2=4ρsinθ.可得直角坐標(biāo)方程:x2+y2=4y,配方為:x2+(y-2)2=4.
可得圓心C(0,2).
∴圓C的圓心到直線l的距離d=$\frac{|0-2-1|}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=$\frac{3}{2}$.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入圓C方程可得:t2+$\sqrt{3}$t-1=0,
可得t1t2=-1,∴|PA|•|PB|=|t1t2|=1.

點(diǎn)評 本題考查了直線與圓的位置關(guān)系、參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某單位為了預(yù)測本單位用電量y度氣溫x℃之間的關(guān)系,經(jīng)過調(diào)查收集某4天的數(shù)據(jù),得到了回歸方程形如$\widehat{y}$=-2x+$\widehat{a}$,且其中的$\overline{x}$=10,$\overrightarrow{y}$=40,預(yù)測當(dāng)?shù)貧鉁貫?℃時(shí),該單位的用電量的度數(shù)為50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果(x+$\frac{a}{x}$)(x-$\frac{2}{x}$)4的展開式中各項(xiàng)系數(shù)之和為2,則展開式中x的系數(shù)是( 。
A.8B.-8C.16D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)$\frac{5}{-2+i}$在復(fù)平面上的對應(yīng)點(diǎn)的坐標(biāo)是( 。
A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x<0,-2<y<-1,則下列結(jié)論正確的是(  )
A.xy>x>xy2B.xy2>xy>xC.xy>xy2>xD.x>xy>xy2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)的定義域?yàn)閇-2,6],x與f(x)部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f(x)的圖象如圖所示.
 x-2 5
 f(x)-2-2  3
下列結(jié)論:
①函數(shù)f(x)在(0,3)上是增函數(shù);
②曲線y=f(x)在x=4處的切線可能與y軸垂直;
③如果當(dāng)x∈[-2,t]時(shí),f(x)的最小值是-2,那么t的最大值為5;
④?x1,x2∈[-2,6],都有|f(x1)-f(x2)|≤a恒成立,則實(shí)數(shù)a的最小值是5,其中正確結(jié)論的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正方體ABCD-A1B1C1D1中,M,N分別為AB,BC的中點(diǎn).
(1)求證:平面B1MN⊥平面BB1D1D;
(2)當(dāng)點(diǎn)P在DD1上運(yùn)動時(shí),是否都有MN∥平面A1C1P,證明你的結(jié)論;
(3)若P是D1D的中點(diǎn),試判斷PB與平面B1MN是否垂直?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某校男女籃球隊(duì)各有10名隊(duì)員,現(xiàn)將這20名隊(duì)員的身高繪制成莖葉圖(單位:cm).男隊(duì)員身高在180cm以上定義為“高個(gè)子”,女隊(duì)員身高在170cm以上定義為“高個(gè)子”,其他隊(duì)員定義為“非高個(gè)子”.按照“高個(gè)子”和“非高個(gè)子”用分層抽樣的方法共抽取5名隊(duì)員.
(1)從這5名隊(duì)員中隨機(jī)選出2名隊(duì)員,求這2名隊(duì)員中有“高個(gè)子”的概率;
(2)求這5名隊(duì)員中,恰好男女“高個(gè)子”各1名隊(duì)員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$下,函數(shù)z=3x-y的最小值是( 。
A.9B.1C.-3D.-9

查看答案和解析>>

同步練習(xí)冊答案