18.復(fù)數(shù)$\frac{5}{-2+i}$在復(fù)平面上的對(duì)應(yīng)點(diǎn)的坐標(biāo)是( 。
A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵$\frac{5}{-2+i}$=$\frac{5(-2-i)}{(-2+i)(-2-i)}=\frac{-10-5i}{5}=-2-i$,
∴復(fù)數(shù)$\frac{5}{-2+i}$在復(fù)平面上的對(duì)應(yīng)點(diǎn)的坐標(biāo)是(-2,-1).
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)f(x)=(1+cos2x)sin2x的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.菜農(nóng)定期使用低害殺蟲農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈.如表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的統(tǒng)計(jì)表:
x12345
y5854392910
(1)令ω=x2,利用給出的參考數(shù)據(jù)求出y關(guān)于ω的回歸方程$\widehat{y}$=$\widehat$ω+$\widehat{a}$($\widehat{a}$,$\widehat$精確到0.1).
參考數(shù)據(jù):$\sum_{i=1}^{5}$ωi=55,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)(yi-$\overline{y}$)=-751,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)2=374.其中ωi=x${\;}_{i}^{2}$,$\overline{ω}$=$\frac{1}{5}$$\sum_{i=1}^{5}$ωi
(2)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量不高于20微克時(shí)對(duì)人體無(wú)害,為了放心食用該蔬菜,請(qǐng)估計(jì)至少需要多少千克的清水洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù)$\sqrt{5}$≈2.24).
(附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{a}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知關(guān)于x的不等式x2-(m+1)x+m<0的解集為A,若集合A中恰好有4個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是[-4,-3)∪(5,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如果P,P2,…Pn是拋物線C=y2=8x上的點(diǎn),它們的橫坐標(biāo)依次為:x1,x2,…,xn,F(xiàn)是拋物線C的焦點(diǎn),若x1+x2+…+xn=2017,|P1F|+|P2F|+…+|PnF|=( 。
A.n+2017B.n+4034C.2n+2017D.2n+4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線$\frac{x}{3}$-$\frac{y}{4}$=1在x軸上的截距是( 。
A.-3B.3C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位),且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=4sinθ.
(1)求圓C的圓心到直線l的距離;
(2)設(shè)圓C與直線l交于點(diǎn)A、B兩點(diǎn),P($\sqrt{3}$,2),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)$\frac{π}{2}$<α<π,且3sin2α+2sinα+12cosα+4=0.
(1)求cosα的值;
(2)求sin($α-\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.復(fù)數(shù)1-$\frac{i}{3+i}$等于( 。
A.$\frac{9}{10}$-$\frac{3}{10}$iB.$\frac{1}{10}$+$\frac{3}{10}$iC.$\frac{9}{10}$+$\frac{3}{10}$iD.$\frac{1}{10}$-$\frac{3}{10}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案