14.已知等差數(shù)列{an}滿足:a2=5,a5+a7=26,數(shù)列{an}的前n項和為Sn
(Ⅰ)求an及Sn
(Ⅱ)設{bn-an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項和Tn

分析 (I)利用通項公式列方程求出首項和公差,代入通項公式和求和公式即可;
(II)根據(jù)等比數(shù)列的通項公式得出bn,使用分組求和得出Tn

解答 解:(Ⅰ)設等差數(shù)列{an}的公差為d,因為a2=5,a5+a7=26,
所以$\left\{\begin{array}{l}{{a}_{1}+d=5}\\{2{a}_{1}+10d=26}\end{array}\right.$,解得a1=3,d=2,
所以an=3+2(n-1)=2n+1,
Sn=3n+$\frac{n(n-1)}{2}$×2=n2+2n.
(Ⅱ)∵{bn-an}是首項為1,公比為3的等比數(shù)列,
∴bn-an=3n-1,所以 bn=an+3n-1
∴Tn=Sn+(1+3+32+33+…+3n-1)=n2+2n+$\frac{{3}^{n}-1}{2}$.

點評 本題考查了等差數(shù)列的通項公式和前n項和公式,等比數(shù)列的求和公式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.設等差數(shù)列{an}的前n項和為Sn,若a5=a3•${∫}_{0}^{2}$(2x+$\frac{1}{2}$)dx,則$\frac{{S}_{9}}{{S}_{5}}$=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=$\frac{x+1}{{{x^2}+3}}$在x=m處取到極大值,則m=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標記錄如下:A1(3,-2$\sqrt{3$)、A2(-2,0)、A3(4,-4)、A4($\sqrt{2}$,$\frac{{\sqrt{2}}}{2}$).
(Ⅰ)經(jīng)判斷點A1,A3在拋物線C2上,試求出C1,C2的標準方程;
(Ⅱ)已知直線l的斜率為1,且經(jīng)過拋物線C2的焦點F與橢圓C1交于A、B兩點,求線段AB的長;
( III)是否存在正數(shù)m,對于過點M(m,0)且與曲線C2有兩個交點A,B的任一直線,都有$\overrightarrow{FA}$•$\overrightarrow{FB}$<0?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=x3+ax+b在(-1,1)上為單調(diào)遞減函數(shù),在(1,+∞)上為單調(diào)遞增函數(shù),則( 。
A.a=1,b=1B.a=1,b∈RC.a=-3,b=3D.a=-3,b∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,若$\sqrt{3}$b=2asinB,則A為(  )
A.60°B.30°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{an}中,a1=1,an+1=3an+2,則an=2×3n-1-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.以圖中的8個點為頂點的三角形的個數(shù)是( 。
A.42B.45C.48D.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為$12π+2\sqrt{2}π$m2

查看答案和解析>>

同步練習冊答案