【題目】給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是( )
A.①②
B.②③
C.③④
D.①④
【答案】B
【解析】解:①是冪函數(shù),其在(0,+∞)上即第一象限內(nèi)為增函數(shù),故此項不符合要求;②中的函數(shù)是由函數(shù) 向左平移1個單位長度得到的,因為原函數(shù)在(0,+∞)內(nèi)為減函數(shù),故此項符合要求;
③中的函數(shù)圖象是由函數(shù)y=x﹣1的圖象保留x軸上方,下方圖象翻折到x軸上方而得到的,故由其圖象可知該項符合要求;
④中的函數(shù)圖象為指數(shù)函數(shù),因其底數(shù)大于1,故其在R上單調(diào)遞增,不合題意.
故選B.
【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關知識點,需要掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.若曲線C的極坐標方程為ρsin2θ+4sinθ﹣ρ=0,直線l: (t為參數(shù))過曲線C的焦點,且與曲線C交于M,N兩點.
(1)寫出曲線C及直線l直角坐標方程;
(2)求|MN|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2(a>0),點A(5,0),P(1,a),若存在點Q(k,f(k))(k>0),要使 =λ( + )(λ為常數(shù)),則k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,π]時,f(x)的值域是[5,8],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=aexlnx+ ,曲線y=f(x)在點(1,f(1))處得切線方程為y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax﹣1.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使f(x)在(﹣1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為θ(30°≤θ≤60°),設正視圖的面積為m,側(cè)視圖的面積為n,當θ變化時,mn的最大值是( )
A.2
B.4
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)調(diào)查,某學校開設了“街舞”、“圍棋”、“武術(shù)”三個社團,三個社團參加的人數(shù)如下表所示:
為調(diào)查社團開展情況,學校社團管理部采用分層抽樣的方法從中抽取一個容量為n的樣本,已知從“街舞”社團抽取的同學8人
社團 | 街舞 | 圍棋 | 武術(shù) |
人數(shù) | 320 | 240 | 200 |
(Ⅰ)求n的值和從“圍棋”社團抽取的同學的人數(shù);
(Ⅱ)若從“圍棋”社團抽取的同學中選出2人擔任該社團活動監(jiān)督的職務,已知“圍棋”社團被抽取的同學中有2名女生,求至少有1名女同學被選為監(jiān)督職務的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{ }中,已知,,,則等于( )
A. B. C. D.
【答案】B
【解析】
將數(shù)列的等式關系兩邊取倒數(shù)是公差為的等差數(shù)列,再根據(jù)等差數(shù)列求和公式得到數(shù)列通項,再取倒數(shù)即可得到數(shù)列{}的通項.
將等式兩邊取倒數(shù)得到,是公差為的等差數(shù)列,=,根據(jù)等差數(shù)列的通項公式的求法得到,故=.
故答案為:B.
【點睛】
這個題目考查的是數(shù)列通項公式的求法,數(shù)列通項的求法中有常見的已知和的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;還有構(gòu)造新數(shù)列的方法,取倒數(shù),取對數(shù)的方法等等.
【題型】單選題
【結(jié)束】
9
【題目】在如圖所示的銳角三角形空地中, 欲建一個面積不小于300m2的內(nèi)接矩形花園(陰影部分), 則其邊長x(單位m)的取值范圍是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com