【題目】已知f(x)=|2x﹣1|.
(1)求f(x)≤3x的解集;
(2)求f(x)+|x+1|≤1的解集.
【答案】
(1)解:由f(x)≤3x得① 或②
解①得 ,解②得 .
∴f(x)≤3x的解集為 .
(2)解:f(x)+|x+1|≤1即|2x﹣1|+|x+1|≤1.
當 時,不等式為2x﹣1+x+1≤1,解得 ,∴解集為空集;
當 ,不等式為﹣2x+1+x+1≤1,解得x≥1,∴解集為空集;
當x≤﹣1時,不等式為﹣2x+1﹣x﹣1≤1,∴解集為空集.
綜上所述,x的取值范圍為空集.
【解析】(1)利用絕對值的幾何意義,即可求f(x)≤3x的解集;(2)利用絕對值的幾何意義,去掉絕對值,即可求f(x)+|x+1|≤1的解集.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為坐標原點,雙曲線和橢圓均過點,且以的兩個頂點和的兩個焦點為頂點的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得與交于兩點,與只有一個公共點,且?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某校隨機抽取200名學生,獲得了他們一周課外閱讀時間(單位:h)的數(shù)據(jù),整理得到數(shù)據(jù)的頻數(shù)分布表和頻率分布直方圖(如圖).
編 號 | 分 組 | 頻 數(shù) |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
續(xù) 表
編 號 | 分 組 | 頻 數(shù) |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合計 | 200 |
(1)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12 h的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計樣本中的200名學生該周課外閱讀時間的平均數(shù)在第幾組.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知空間中三點A(-2,0,2),B(-1,1,2),C(-3,0,4),設=,=.
(1)求與的夾角的余弦值; (2)若與k-2互相垂直,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列,其中的公差不為.設是數(shù)列
的前項和.若、、是數(shù)列的前項,且.
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)若數(shù)列為等差數(shù)列,求實數(shù);
(Ⅲ)構造數(shù)列,,,,,,,,,…,,,,,…,,…,
若該數(shù)列前項和,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com