若函數(shù)f(x)=|x|•(x+2)在區(qū)間(a,2a+1)上單調遞減,則實數(shù)a的取值范圍是
 
考點:函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:根據(jù)分段函數(shù)的性質,求出函數(shù)f(x)的單調遞減區(qū)間,解不等式即可得到結論.
解答: 解:當x≥0時,f(x)=|x|•(x+2)=x•(x+2)=(x+1)2-1,函數(shù)在[0,+∞)上單調遞增,
當x<0時,f(x)=|x|•(x+2)=-x•(x+2)=-(x+1)2+1,函數(shù)在[-1,0)上遞減,在(-∞,-1)上遞增,
若在區(qū)間(a,2a+1)上單調遞減,
2a+1≤0
a≥-1
,即
a≤-
1
2
a≥-1
,
則-1≤a≤-
1
2
,
故答案為:(-1,-
1
2
]
點評:本題主要考查函數(shù)單調區(qū)間的應用,根據(jù)分段函數(shù)的性質求出遞減區(qū)間時解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列四個命題中,真命題的序號有
 
.(寫出所有真命題的序號)
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分不必要條件;
②命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1≥0”;
③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;
④函數(shù)f(x)=lnx+x-
3
2
在區(qū)間(1,2)上有且僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四面體PABC中,若E,F(xiàn)分別是PC,AB的中點,則異面直線PF與BE所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
1
3
x3+ax
有三個單調區(qū)間,則a取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在三棱錐S-ABC中,△SBC、△ABC都是等邊三角形,平面SBC⊥平面ABC,SA=6,則三棱錐體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=
4
3
an-
2
3
(n∈N+),則a1=
 
,an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=sinx,則f′(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosx=
3
5
,x∈(-
π
2
,0),則
.
sinxcosx
11
.
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2•cos(xπ),若an=f(n)+f(n+1),則
2014
i=1
ai=( 。
A、-2015B、-2014
C、2014D、2015

查看答案和解析>>

同步練習冊答案