已知函數(shù)f(x)=x2•cos(xπ),若an=f(n)+f(n+1),則
2014
i=1
ai=( 。
A、-2015B、-2014
C、2014D、2015
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出
2014
i=1
ai=(a1+a3+a5+…+a2013)+(a2+a4+a6+…+a2014)=(3+7+11+…+4025)-(5+9+13+…+4029),由此能求出結(jié)果.
解答: 解:∵函數(shù)f(x)=x2•cos(xπ),若an=f(n)+f(n+1),
2014
i=1
ai=(a1+a3+a5+…+a2013)+(a2+a4+a6+…+a2014
=(3+7+11+…+4027)-(5+9+13+…+4029)
=-2×1007
=-2014.
故選:B.
點評:本題考查數(shù)列的前2014項的和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意余弦函數(shù)的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x|•(x+2)在區(qū)間(a,2a+1)上單調(diào)遞減,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某算法的程序框圖如圖所示,則輸出的S的值為(  ) 
A、
2011
2012
B、
2012
4025
C、
2013
4024
D、
2013
4025

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[-2,6],x與f(x)部分對應(yīng)值如下表,
x-2056
f(x)3-2-23
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.給出下列說法:
①函數(shù)f(x)在(0,3)上是增函數(shù);
②曲線y=f(x)在x=4處的切線可能與y軸垂直;
③如果當(dāng)x∈[-2,t]時,f(x)的最小值是-2,那么t的最大值為5;
④?x1,x2∈[-2,6],都有|f(x1)-f(x2)|≤a恒成立,則實數(shù)a的最小值是5.
正確的個數(shù)是( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)以及雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的漸近線將第一象限三等分,則雙曲線
x2
a2
-
y2
b2
=1的離心率為( 。
A、2或
3
B、
6
2
3
3
C、
3
6
D、2或
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項和為Sn,如果已知a5+a21的值,我們可以求得( 。
A、S23的值
B、S24的值
C、S25的值
D、S26的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
2
n
A
2
2
=42,則
C
3
n
的值為(  )
A、6B、7C、35D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(3x+1),x∈R的圖象,只需將函數(shù)y=sin3x,x∈R的圖象( 。
A、向左平移1個的單位長度
B、向右平移1個的單位長度
C、向左平移
1
3
個的單位長度
D、向右平移
1
3
個的單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+lnx
在(0,+∞)上是增函數(shù),則a的取值范圍是( 。
A、(-∞,2)
B、(-∞,2]
C、(-2,2)
D、[-2,2]

查看答案和解析>>

同步練習(xí)冊答案